Journal Home > Volume 13 , Issue 8

Regularly assembled structures of nanowires, such as aligned arrays, junctions and interconnected networks, have great potential for the applications in logical circuits, address decoders, photoelectronic devices and transparent electrodes. However, for now it is still lack of effective approaches for constructing nanowire bifurcated junctions and crosslinked networks with ordered orientations and high quality. Herein, we report the controlled growth of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks with well-aligned directions and high crystalline degree by utilizing the proportional lattice match between nanowires and substrates. Taking advantages of the "tip-to-stem splice" assembly of individual nanowires, the precise orientation alignments of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks were successfully realized. The controlled growth mechanism and structural evolution process have been elucidated by detailed atomic structure characterizations and modeling. The highly crystal quality and direct energy bandgap of as-assembled photodetectors based on individual bismuth sulfide nanowires enabled high photoresponsivity and fast switch time under light illumination. The three-terminal devices based on nanowire bifurcated junctions present rapid carrier transport across the junction. The flexible photodetectors based on nanowire crosslinked networks show very minimal decay of photocurrent after long-term bending test. This work may provide new insights for the guided construction and regular assembly of low-dimensional ordered functional nanostructures towards advanced nanotechnologies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks

Show Author's information Yi Hu1Lingyun Mao1Xin Yuan1Jingyu Lu1Renpeng Chen1Tao Chen1Wenjun Zhang1Xiaolan Xue1Wen Yan1Mohammadreza Shokouhimehr2Xiao Li Zhang3Zhong Jin1,4( )
Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Shenzhen Research Institute of Nanjing University, Shenzhen 518063, China

Abstract

Regularly assembled structures of nanowires, such as aligned arrays, junctions and interconnected networks, have great potential for the applications in logical circuits, address decoders, photoelectronic devices and transparent electrodes. However, for now it is still lack of effective approaches for constructing nanowire bifurcated junctions and crosslinked networks with ordered orientations and high quality. Herein, we report the controlled growth of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks with well-aligned directions and high crystalline degree by utilizing the proportional lattice match between nanowires and substrates. Taking advantages of the "tip-to-stem splice" assembly of individual nanowires, the precise orientation alignments of Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks were successfully realized. The controlled growth mechanism and structural evolution process have been elucidated by detailed atomic structure characterizations and modeling. The highly crystal quality and direct energy bandgap of as-assembled photodetectors based on individual bismuth sulfide nanowires enabled high photoresponsivity and fast switch time under light illumination. The three-terminal devices based on nanowire bifurcated junctions present rapid carrier transport across the junction. The flexible photodetectors based on nanowire crosslinked networks show very minimal decay of photocurrent after long-term bending test. This work may provide new insights for the guided construction and regular assembly of low-dimensional ordered functional nanostructures towards advanced nanotechnologies.

Keywords: Bi2S3 nanowires, bifurcated junctions, crosslinked networks, flexible optoelectronic devices

References(38)

[1]
Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841-850.
[2]
Zhai, T. Y.; Li, L.; Wang, X.; Fang, X. S.; Bando, Y.; Golberg, D. Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. 2010, 20, 4233-4248.
[3]
Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569-576.
[4]
Yan, R. X.; Park, J. H.; Choi, Y.; Heo, C. J.; Yang, S. M.; Lee, L. P.; Yang, P. D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191-196.
[5]
Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z. Y. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560-4580.
[6]
Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633.
[7]
Wang, D. L.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871-874.
[8]
Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382-385.
[9]
Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. USA 2011, 108, 12212-12216.
[10]
Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.
[11]
Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377-1379.
[12]
Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem., Int. Ed. 2008, 47, 5524-5542.
[13]
Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 2012, 6, 1888-1900.
[14]
Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112-115.
[15]
Plissard, S. R.; van Weperen, I.; Car, D.; Verheijen, M. A.; Immink, G. W. G.; Kammhuber, J.; Cornelissen, L. J.; Szombati, D. B.; Geresdi, A.; Frolov, S. M. et al. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 2013, 8, 859-864.
[16]
Rieger, T.; Rosenbach, D.; Vakulov, D.; Heedt, S.; Schäpers, T.; Grützmacher, D.; Lepsa, M. I. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 2013, 16, 1933-1941.
[17]
Yao, Y. G.; Fu, K. K.; Zhu, S. Z.; Dai, J. Q.; Wang, Y. B.; Pastel, G.; Chen, Y. N.; Li, T.; Wang, C. W.; Li, T. et al. Carbon welding by ultrafast joule heating. Nano Lett. 2016, 16, 7282-7289.
[18]
Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 2011, 333, 1003-1007.
[19]
Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, S-286.
[20]
Wang, Q. S.; Li, J.; Lei, Y.; Wen, Y.; Wang, Z. X.; Zhan, X. Y.; Wang, F.; Wang, F. M.; Huang, Y.; Xu, K. et al. Oriented growth of Pb1-xSnxTe nanowire arrays for integration of flexible infrared detectors. Adv. Mater. 2016, 28, 3596-3601.
[21]
Peng, X. S.; Meng, G. W.; Zhang, J.; Zhao, L. X.; Wang, X. F.; Wang, Y. W.; Zhang, L. D. Electrochemical fabrication of ordered Bi2S3 nanowire arrays. J. Phys. D Appl. Phys. 2001, 34, 3224-3228.
[22]
Cademartiri, L.; Malakooti, R.; O'Brien, P. G.; Migliori, A.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Innentitelbild: Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew. Chem. 2008, 120, 3708.
[23]
Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634-638.
[24]
Mohan, R. Green bismuth. Nat. Chem. 2010, 2, 336.
[25]
Thomson, J. W.; Cademartiri, L.; MacDonald, M.; Petrov, S.; Calestani, G.; Zhang, P.; Ozin, G. A. Ultrathin Bi2S3 nanowires: Surface and core structure at the cluster-nanocrystal transition. J. Am. Chem. Soc. 2010, 132, 9058-9068.
[26]
Cademartiri, L.; Scotognella, F.; O’Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482-1486.
[27]
Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: One-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938-8946.
[28]
Tang, C. J.; Wang, C. Q.; Su, F. J.; Zang, C. H.; Yang, Y. X.; Zong, Z. J.; Zhang, Y. S. Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sci. 2010, 12, 1352-1356.
[29]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[30]
Xu J. Z.; Li, H. N.; Fang, S. F.; Jiang, K.; Yao, H. Z.; Fang, F. E.; Chen, F. M.; Wang, Y.; Shi, Y. M. Synthesis of bismuth sulfide nanobelts for high performance broadband photodetectors. J. Mater. Chem. C 2020, 8, 2102-2108.
[31]
Chao, J. F.; Xing, S. M.; Liu, Z. D.; Zhang, X. T.; Zhao, Y. L.; Zhao, L. H.; Fan, Q. F. Large-scale synthesis of Bi2S3 nanorods and nanoflowers for flexible near-infrared laser detectors and visible light photodetectors. Mater. Res. Bull. 2018, 98, 194-199.
[32]
Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848-2855.
[33]
Xiao, G. J.; Dong, Q. F.; Wang, Y. N.; Sui, Y. M.; Ning, J. J.; Liu, Z. Y.; Tian, W. J.; Liu, B. B.; Zou G. T.; Zou, B. One-step solution synthesis of bismuth sulfide (Bi2S3) with various hierarchical architectures and their photoresponse properties. RSC Adv. 2012, 2, 234-240.
[34]
Konstantatos, G.; Levina, L.; Tang, J.; Sargent H. E. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 2008, 8, 4002-4006.
[35]
Zhai, T. Y.; Li, L.; Ma, Y.; Liao, M. Y.; Wang, X.; Fang, X. S.; Yao, J. N.; Bando, Y.; Golberg, D. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem. Soc. Rev. 2011, 40, 2986-3004.
[36]
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.
[37]
Li, Q. L.; Li, Y.; Gao, J.; Wang, S. D.; Sun, X. H. High performance single In2Se3 nanowire photodetector. Appl. Phys. Lett. 2011, 99, 243105.
[38]
Li, H. F.; Tang, Z. J.; Liu, Z. X.; Zhi, C. Y. Evaluating flexibility and wearability of flexible energy storage devices. Joule 2019, 3, 613-619.
File
12274_2020_2841_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2019
Revised: 22 April 2020
Accepted: 30 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key R&D Program (Nos. 2017YFA0208200 and 2016YFB0700600), the Fundamental Research Funds for the Central Universities (No. 0205-14380219), the Projects of the National Natural Science Foundation of China (NSFC) (Nos. 21872069, 51761135104, and 21573108), the Natural Science Foundation of Jiangsu Province (No. BK20180008), and the High-Level Innovation and Entrepreneurship Project of Jiangsu Province of China.

Return