Journal Home > Volume 13 , Issue 8

Construction of micro tumor sensitive theranostic nanoagents that can increase the accuracy of imaging diagnosis and boost the therapeutic efficacy has been demonstrated for a promising approach for diagnosis and treatment of cancer. Herein, we reported a novel super-paramagnetic iron oxide (SPIO) based nanoplatform that possess significantly enhanced magnetic resonance property and photothermal effect for tumor theranostic purpose. This polyethylene glycol with four phenylboronic acid (PEG-B4)/CNTs@porphyrin (ph)/SPIO (BCPS) nanoplatform was simply prepared via integrated SPIO, ph, and a novel dendrimer with PEG liner and four PBA groups (PEG-B4) on the surface of carbon nanotubes (CNTs). Subsequently, a significant T2 relaxation rate enhanced can be achieved by the reduced accessibility of water to SPIO clustering. Moreover, the synergetic enhanced photothermal from BCPS nanoplatform contributed to better photothermal effect for cancer therapy. Furthermore, the targeting ability to sialic acid overexpressed tumor was further introduced from phenylboronic acid from PEG-B4. We showed that BCPS nanoplatform could not only selectively identify solid tumors and detect micro-sized metastatic tumor (1 mm) in the liver, but also effectively ablate tumors in a xenograft model, thereby achieving a complete cure rate of 100% at low laser dose. Our results highlight the potential of BCPS nanoplatform for accurate micro-tumor diagnosis and effective tumor therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A novel clustered SPIO nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy

Show Author's information Hongwei Lu1,2Yongjing Xu2Ruirui Qiao3Ziwei Lu4Pin Wang5Xindan Zhang6An Chen1Liming Zou2( )Zhongling Wang1( )
Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210029, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Construction of micro tumor sensitive theranostic nanoagents that can increase the accuracy of imaging diagnosis and boost the therapeutic efficacy has been demonstrated for a promising approach for diagnosis and treatment of cancer. Herein, we reported a novel super-paramagnetic iron oxide (SPIO) based nanoplatform that possess significantly enhanced magnetic resonance property and photothermal effect for tumor theranostic purpose. This polyethylene glycol with four phenylboronic acid (PEG-B4)/CNTs@porphyrin (ph)/SPIO (BCPS) nanoplatform was simply prepared via integrated SPIO, ph, and a novel dendrimer with PEG liner and four PBA groups (PEG-B4) on the surface of carbon nanotubes (CNTs). Subsequently, a significant T2 relaxation rate enhanced can be achieved by the reduced accessibility of water to SPIO clustering. Moreover, the synergetic enhanced photothermal from BCPS nanoplatform contributed to better photothermal effect for cancer therapy. Furthermore, the targeting ability to sialic acid overexpressed tumor was further introduced from phenylboronic acid from PEG-B4. We showed that BCPS nanoplatform could not only selectively identify solid tumors and detect micro-sized metastatic tumor (1 mm) in the liver, but also effectively ablate tumors in a xenograft model, thereby achieving a complete cure rate of 100% at low laser dose. Our results highlight the potential of BCPS nanoplatform for accurate micro-tumor diagnosis and effective tumor therapy.

Keywords: photothermal therapy, synergetic effect, theranostic agent, clustered SPIO nanoplatform, T2 MRI, micro-tumor detection

References(37)

[1]
Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886-4893.
[2]
Lv, R. C.; Yang, P. P.; He, F.; Gai, S. L.; Li, C. X.; Dai, Y. L.; Yang, G. X.; Lin, J. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 2015, 9, 1630-1647.
[3]
Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285-3291.
[4]
Yu, J.; Yang, C.; Li, J. D. S.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L. et al. Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 2014, 26, 4114-4120.
[5]
Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063-1068.
[6]
Dong, W. J.; Li, Y. S.; Niu, D. C.; Ma, Z.; Gu, J. L.; Chen, Y.; Zhao, W. R.; Liu, X. H.; Liu, C. S.; Shi, J. L. Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 2011, 23, 5392-5397.
[7]
Bardhan, R.; Chen, W. X.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L. L.; Morosan, E.; Pautler, R. G.; Joshi, A.; Halas, N. J. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 2009, 19, 3901-3909.
[8]
Dang, X. N.; Bardhan, N. M.; Qi, J. F.; Gu, L.; Eze, N. A.; Lin, C. W.; Kataria, S.; Hammond, P. T.; Belcher, A. M. Deep-tissue optical imaging of near cellular-sized features. Sci. Rep. 2019, 9, 3873.
[9]
Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 2010, 110, 3019-3042.
[10]
Tromsdorf, U. I.; Bigall, N. C.; Kaul, M. G.; Bruns, O. T.; Nikolic, M. S.; Mollwitz, B.; Sperling, R. A.; Reimer, R.; Hohenberg, H.; Parak, W. J. et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 2007, 7, 2422-2427.
[11]
Jang, J. T.; Nah, H.; Lee, J. H.; Moon, S. H.; Kim, M. G.; Cheon, J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. 2009, 121, 1260-1264.
[12]
Paquet, C.; de Haan, H. W.; Leek, D. M.; Lin, H. Y.; Xiang, B.; Tian, G. H.; Kell, A.; Simard, B. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: A particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano 2011, 5, 3104-3112.
[13]
Zhang, M.; Wang, W. T.; Wu, F.; Yuan, P.; Chi, C.; Zhou, N. L. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 2017, 123, 70-83.
[14]
Mehra, N. K.; Palakurthi, S. Interactions between carbon nanotubes and bioactives: A drug delivery perspective. Drug Disco. Today 2016, 21, 585-597.
[15]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393.
[16]
Meng, L. J.; Zhang, X. K.; Lu, Q. H.; Fei, Z. F.; Dyson, P. J. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials 2012, 33, 1689-1698.
[17]
Liu, Y.; Muir, B. W.; Waddington, L. J.; Hinton, T. M.; Moffat, B. A.; Hao, X. J.; Qiu, J. S.; Hughes, T. C. Colloidally stabilized magnetic carbon nanotubes providing MRI contrast in mouse liver tumors. Biomacromolecules 2015, 16, 790-797.
[18]
Li, R. B.; Wu, R. A.; Zhao, L.; Qin, H. Q.; Wu, J. L.; Zhang, J. W.; Bao, R. Y.; Zou, H. F. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging. Nanotechnology 2014, 25, 495102.
[19]
Nguyen, T. D. T.; Pitchaimani, A.; Ferrel, C.; Thakkar, R.; Aryal, S. Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging. Nanoscale 2018, 10, 284-294.
[20]
Peng, E.; Choo, E. S. G.; Chandrasekharan, P.; Yang, C. T.; Ding, J.; Chuang, K. H.; Xue, J. M. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 2012, 8, 3620-3630.
[21]
Deng, L. M.; Cai, X. J.; Sheng, D. L.; Yang, Y.; Strohm, E. M.; Wang, Z. G.; Ran, H. T.; Wang, D.; Zheng, Y. Y.; Li, P. et al. A laser-activated biocompatible theranostic nanoagent for targeted multimodal imaging and photothermal therapy. Theranostics 2017, 7, 4410-4423.
[22]
Wang, Z. L.; Xue, X. D.; He, Y. X.; Lu, Z. W.; Jia, B.; Wu, H.; Yuan, Y.; Huang, Y.; Wang, H.; Lu, H. W. et al. Novel redox-responsive polymeric magnetosomes with tunable magnetic resonance property for in vivo drug release visualization and dual-modal cancer therapy. Adv. Funct. Mater. 2018, 1802159.
[23]
Lartigue, L.; Hugounenq, P.; Alloyeau, D.; Clarke, S. P.; Lévy, M.; Bacri, J. C.; Bazzi, R.; Brougham, D. F.; Wilhelm, C.; Gazeau, F. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 2012, 6, 10935-10949.
[24]
Qiu, P. H.; Jensen, C.; Charity, N.; Towner, R.; Mao, C. B. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J. Am. Chem. Soc. 2010, 132, 17724-17732.
[25]
Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Sakamoto, W.; Yogo, T.; Ishimura, K. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 2014, 4, 834-844.
[26]
Melancon, M. P.; Lu, W.; Zhong, M.; Zhou, M.; Liang, G.; Elliott, A. M.; Hazle, J. D.; Myers, J. N.; Li, C.; Stafford, R. J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials 2011, 32, 7600-7608.
[27]
Shen, S.; Wang, S.; Zheng, R.; Zhu, X. Y.; Jiang, X. G.; Fu, D. L.; Yang, W. L. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 2015, 39, 67-74.
[28]
Liang, C.; Diao, S.; Wang, C.; Gong, H.; Liu, T.; Hong, G. S.; Shi, X. Z.; Dai, H. J.; Liu, Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 2014, 26, 5646-5652.
[29]
Fan, B.; Kang, L.; Chen, L. Q.; Sun, P.; Jin, M. J.; Wang, Q. M.; Bae, Y. H.; Huang, W.; Gao, Z. G. Systemic siRNA delivery with a dual pH-responsive and tumor-targeted nanovector for inhibiting tumor growth and spontaneous metastasis in orthotopic murine model of breast carcinoma. Theranostics 2017, 7, 357-376.
[30]
Tsoukalas, C.; Geninatti-Crich, S.; Gaitanis, A.; Tsotakos, T.; Paravatou-Petsotas, M.; Aime, S.; Jiménez-Juárez, R.; Anagnostopoulos, C. D.; Djanashvili, K.; Bouziotis, P. Tumor targeting via sialic acid: [68Ga] DOTA-en-pba as a new tool for molecular imaging of cancer with PET. Mol. Imaging Biol. 2018, 20, 798-807.
[31]
Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc. 2013, 135, 15501-15507.
[32]
Geninatti Crich, S.; Alberti, D.; Szabo, I.; Aime, S.; Djanashvili, K. MRI visualization of melanoma cells by targeting overexpressed sialic acid with a GdIII-dota-en-pba imaging reporter. Angew. Chem., Int. Ed. 2013, 52, 1161-1164.
[33]
Lu, H. W.; Zou, L. M.; Xu, Y. J.; Li, Y. V. Controlled dispersion of multiwalled carbon nanotubes modified by hyperbranched polylysine. J. Appl. Polym. Sci. 2018, 135, 46249.
[34]
Pramanik, S.; Ataollahi, F.; Pingguan-Murphy, B.; Oshkour, A. A.; Osman, N. A. A. In vitro study of surface modified poly(ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Sci. Rep. 2015, 5, 9806.
[35]
Ai, H.; Flask, C.; Weinberg, B.; Shuai, X. T.; Pagel, M. D.; Farrell, D.; Duerk, J.; Gao, J. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater. 2005, 17, 1949-1952.
[36]
Kaittanis, C.; Shaffer, T. M.; Ogirala, A.; Santra, S.; Perez, J. M.; Chiosis, G.; Li, Y. M.; Josephson, L.; Grimm, J. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 2014, 5, 3384.
[37]
Cao, J. T.; Zhang, P. H.; Liu, Y. M.; Abdel-Halim, E. S.; Zhu, J. J. Versatile microfluidic platform for the assessment of sialic acid expression on cancer cells using quantum dots with phenylboronic acid tags. ACS Appl. Mater. Interfaces 2015, 7, 14878-14884.
File
12274_2020_2839_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2020
Revised: 27 April 2020
Accepted: 29 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors would like to acknowledge the Research Center for Analysis & Measurement of Donghua University. This work was supported by National Natural Science Foundation of China (No. 81971664), Shanghai Pujang Program (No. 2019PJD044), National Key Research and Development Project of China (No. 2016YFB0303200) and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support.

Return