Journal Home > Volume 13 , Issue 8

Electrodynamic therapy (EDT) is a conceptually new cancer treatment approach recently proposed by our group. During EDT, the electro-driven catalytic reaction would occur on the surface of platinum nanoparticles (PtNPs) to produce reactive oxygen species (ROS) under the direct current (DC) or square-wave alternating current (AC) electric field. To further extend the potential of EDT, we hereby designed mesoporous silica-based nanocomposites decorated with PtNPs and loaded with anticancer drug doxorubicin (DOX) for synergistic electrodynamic-chemotherapy. Such silica-based nanocomposites could enable homogenous killing of large-sized tumors (over 500 mm3) and realize remarkable tumor destruction efficacy at a relatively low quantity of electricity. To our best knowledge, this is the first study to combine EDT and chemotherapy to develop a synergetic nanoplatform, openning a new dimension for the design of other EDT-based anticancer strategies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy

Show Author's information Tongxu Gu1Tong Chen1Liang Cheng2Xiang Li1( )Gaorong Han1Zhuang Liu2( )
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

Abstract

Electrodynamic therapy (EDT) is a conceptually new cancer treatment approach recently proposed by our group. During EDT, the electro-driven catalytic reaction would occur on the surface of platinum nanoparticles (PtNPs) to produce reactive oxygen species (ROS) under the direct current (DC) or square-wave alternating current (AC) electric field. To further extend the potential of EDT, we hereby designed mesoporous silica-based nanocomposites decorated with PtNPs and loaded with anticancer drug doxorubicin (DOX) for synergistic electrodynamic-chemotherapy. Such silica-based nanocomposites could enable homogenous killing of large-sized tumors (over 500 mm3) and realize remarkable tumor destruction efficacy at a relatively low quantity of electricity. To our best knowledge, this is the first study to combine EDT and chemotherapy to develop a synergetic nanoplatform, openning a new dimension for the design of other EDT-based anticancer strategies.

Keywords: mesoporous silica, chemotherapy, platinum nanoparticles, electrodynamic therapy

References(34)

[1]
Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017, 4, 1600124.
[2]
Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881-4985.
[3]
Zhou, Z. J.; Song, J. B.; Nie, L. M.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597-6626.
[4]
Qian, X. Q.; Zhang, J.; Gu, Z.; Chen, Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 2019, 211, 1-13.
[5]
Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.
[6]
Gao, R.; Mei, X.; Yan, D. P.; Liang, R. Z.; Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 2018, 9, 2798.
[7]
Qian, X. Q.; Zheng, Y. Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater. 2016, 28, 8097-8129.
[8]
Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.
[9]
Song, G. S.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996.
[10]
Takahashi, J.; Murakami, M.; Mori, T.; Iwahashi, H. Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci. Rep. 2018, 8, 2728.
[11]
Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101-2106.
[12]
Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902-4906.
[13]
dos Santos, A. F., de Almeida D. R. Q., Terra, L. F., Maurício, S., Baptista, M. S., Labriola, L. Photodynamic therapy in cancer treatment-an update review. J. Cancer Metastasis Treat. 2019, 5, 1-20.
[14]
Wan, G. Y.; Liu, Y.; Chen, B. W.; Liu, Y. Y.; Wang, Y. S.; Zhang, N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med. 2016, 13, 325-338.
[15]
Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[16]
Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.
[17]
Gu, T. X.; Wang, Y.; Lu, Y. H.; Cheng, L.; Feng, L. Z.; Zhang, H.; Li, X.; Han, G. R.; Liu, Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment. Adv. Mater. 2019, 31, 1806803.
[18]
Miklavčič, D.; Serša, G.; Kryžanowski, M.; Novakovič, S.; Bobanović, F.; Golouh, R.; Vodovnik, L. Tumor treatment by direct electric current-tumor temperature and pH, electrode material and configuration. Bioelectrochem. Bioenerget. 1993, 30, 209-220.
[19]
Cury, F. L.; Bhindi, B.; Rocha, J.; Scarlata, E.; El Jurdi, K.; Ladouceur, M.; Beauregard, S.; Vijh, A. K.; Taguchi, Y.; Chevalier, S. Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry 2015, 104, 1-9.
[20]
Wang, J. J.; Wang, X. Y.; Lu, S. Y.; Hu, J.; Zhang, W.; Xu, L.; Gu, D. C.; Yang, W. T.; Tang, W.; Liu, F. J. et al. Integration of cascade delivery and tumor hypoxia modulating capacities in core-releasable satellite nanovehicles to enhance tumor chemotherapy. Biomaterials 2019, 223, 119465.
[21]
Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555-8561.
[22]
Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592-599.
[23]
Xu, X. B.; Yang, G. M.; Xue, X. D.; Lu, H. W.; Wu, H.; Huang, Y.; Jing, D.; Xiao, W. W.; Tian, J. K.; Yao, W. et al. A polymer-free, biomimicry drug self-delivery system fabricated via a synergistic combination of bottom-up and top-down approaches. J. Mater. Chem. B 2018, 6, 7842-7853.
[24]
Zhang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139.
[25]
Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144-3176.
[26]
Mai, W. X.; Meng, H. Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integr. Biol. 2013, 5, 19-28.
[27]
Yao, X. M.; Chen, X. F.; He, C. L.; Chen, L.; Chen, X. S. Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy. J. Mater. Chem. B 2015, 3, 4707-4714.
[28]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.
[29]
Guo, Z. D.; Chen, M.; Peng, C. Y.; Mo, S. G.; Shi, C. R.; Fu, G. F.; Wen, X. J.; Zhuang, R. Q.; Su, X. H.; Liu, T. et al. pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials 2018, 179, 134-143.
[30]
Gu, T. X.; Cheng, L.; Gong, F.; Xu. J.; Li, X.; Han, G. R.; Liu, Z. Upconversion composite nanoparticles for tumor hypoxia modulation and enhanced near-infared-triggered photodynamic therapy. ACS Appl. Mater. Interfaces 2018, 10, 15494-15503.
[31]
Nandiyanto, A. B. D.; Kim, S. G.; Iskandar, F.; Okuyama, K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater. 2009, 120, 447-453.
[32]
Chen, X. F.; Mei, Q. S.; Yu, L.; Ge, H. W.; Yue, J.; Zhang, K.; Hayat, T.; Alsaedi, A.; Wang, S. H. Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl. Mater. Interfaces 2018, 10, 42225-42232.
[33]
Botelho da Silva, S.; Krolicka, M.; van den Broek, L. A. M.; Frissen, A. E.; Boeriu, C. G. Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydr. Polym. 2018, 186, 299-309.
[34]
Tsang, W. P.; Chau, S. P. Y.; Kong, S. K.; Fung, K. P.; Kwok, T. T. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003, 73, 2047-2058.
File
12274_2020_2838_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2019
Revised: 27 April 2020
Accepted: 29 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by National Nature Science Foundation of China (No. 51672247), '111’ Program funded by Education Ministry of China and Sate Bureau of Foreign Experts Affairs (No. B16043), the Collaborative Innovation Center of Suzhou Nano Science and Technology, Fundamental Research Funds for the Central Universities, Major State Research Program of China (No. 2016YFC1101900), ZJU-Hangzhou Global Scientific and Technological Innovation Center and Provincial Key Research Program of Zhejiang Province (No. 2020C04005).

Return