[1]
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
[2]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[3]
Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature 2019, 567, 511-515.
[5]
Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commu. 2015, 6, 7747.
[6]
Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682-689.
[7]
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
[8]
Misra, R. K.; Aharon, S.; Li, B. L.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326-330.
[9]
Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970-8980.
[10]
Xia, R.; Fei, Z. F.; Drigo, N.; Bobbink, F. D.; Huang, Z. J.; Jasiūnas, R.; Franckevičius, M.; Gulbinas, V.; Mensi, M.; Fang, X. D. et al. Retarding thermal degradation in hybrid perovskites by ionic liquid additives. Adv. Funct. Mater. 2019, 29, 1902021.
[11]
Wang, Y.; Zhang, T. Y.; Kan, M.; Zhao, Y. X. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345-12348.
[12]
Wu, T. H.; Wang, Y. B.; Dai, Z. S.; Cui, D. Y.; Wang, T.; Meng, X. Y.; Bi, E. B.; Yang, X. D.; Han, L. Y. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 2019, 31, 1900605.
[13]
Liu, Y.; He, B. L.; Duan, J. L.; Zhao, Y. Y.; Ding, Y.; Tang, M. X.; Chen, H. Y.; Tang, Q. W. Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr3 perovskite solar cells. J. Mater. Chem. A 2019, 7, 12635-12644.
[14]
Wang, Z.; Baranwal, A. K.; Kamarudin, M. A.; Ng, C. H.; Pandey, M.; Ma, T. L.; Hayase, S. Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy 2019, 59, 258-267.
[15]
Gong, M. G.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Z. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano 2019, 13, 1772-1783.
[16]
Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phy. Chem. Lett. 2015, 6, 2452-2456.
[17]
Chen, W.; Zhang, J.; Xu, G.; Xue, R.; Li, Y.; Zhou, Y.; Hou, J.; Li, Y. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 2018, 30, e1800855.
[18]
Wang, K. L.; Wang, R.; Wang, Z. K.; Li, M.; Zhang, Y.; Ma, H.; Liao, L. S.; Yang, Y. Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett. 2019, 19, 5176-5184.
[19]
Zhou, L.; Guo, X.; Lin, Z. H.; Ma, J.; Su, J.; Hu, Z. S.; Zhang, C. F.; Liu, S. Z.; Chang, J. J.; Hao, Y. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 2019, 60, 583-590.
[20]
Wang, Y.; Liu, X. M.; Zhang, T. Y.; Wang, X. T.; Kan, M.; Shi, J. L.; Zhao, Y. X. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant? Angew. Chem., Int. Ed. 2019, 58, 16691-16696.
[21]
Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225.
[22]
Zhang, T. Y.; Dar, M. I.; Li, G.; Xu, F.; Guo, N. J.; Grätzel, M.; Zhao, Y. X. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 2017, 3, e1700841.
[23]
Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219-2227.
[24]
Jena, A. K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3. Chem. Mater. 2018, 30, 6668-6674.
[25]
Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W.; Luo, J. S.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J. T.; Dietler, G. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 2019, 3, 205-214.
[26]
Zhao, H.; Xu, J.; Zhou, S. J.; Li, Z. Z.; Zhang, B.; Xia, X.; Liu, X. L.; Dai, S. Y.; Yao. J. X. Preparation of tortuous 3D γ-CsPbI3 films at low temperature by CaI2 as dopant for highly efficient perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1808986.
[27]
Liu, C.; Li, W. Z.; Li, H. Y.; Wang, H. M.; Zhang, C. L.; Yang, Y. G.; Gao, X. Y.; Xue, Q. F.; Yip, H. L.; Fan, J. D. et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803572.
[28]
Wang, Z. K.; Li, M.; Yang, Y. G.; Hu, Y.; Ma, H.; Gao, X. Y.; Liao, L. S. High efficiency Pb-In binary metal perovskite solar cells. Adv. Mater. 2016, 28, 6695-6703.
[29]
Luo, P. F.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J. G.; Xu, C. X.; Lu, Y. W. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phy. Chem. Lett. 2016, 7, 3603-3608.
[30]
Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Bai, D. L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 2018, 9, 4544.
[31]
Wang, Y.; Zhang, T. Y.; Kan, M.; Li, Y. H.; Wang, T.; Zhao, Y. X. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2018, 2, 2065-2075.
[32]
Yang, M. J.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3 Br-selective Ostwald ripening. Nat. Commun. 2016, 7, 12305.
[33]
Zeng, Q. S.; Zhang, X. Y.; Feng, X. L.; Lu, S. Y.; Chen, Z. L.; Yong, X.; Redfern, S. A. T.; Wei, H. T.; Wang, H. Y.; Shen, H. Z. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 2018, 30, 1705393.
[34]
Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204.
[35]
Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Wang, H. R.; Feng, J. S.; Wang, Q.; Liu, S. Z. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy 2019, 58, 175-182.
[36]
Thambidurai, M.; Shini, F.; Salim, K. M. M.; Harikesh, P. C.; Bruno, A.; Jamaludin, N. F.; Lie, S.; Mathews, N.; Dang, C. Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer. J. Mater. Chem. C 2019, 7, 5028-5036.
[37]
Ma, C. Q.; Shen, D.; Ng, T. W.; Lo, M. F.; Lee, C. S. 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 2018, 30, 1800710.
[38]
Zhang, C. C.; Wang, Z. K.; Li, M.; Liu, Z. Y.; Yang, J. E.; Yang, Y. G.; Gao, X. Y.; Ma, H. Electric-field assisted perovskite crystallization for high-performance solar cells. J. Mater. Chem. A 2018, 6, 1161-1170.
[39]
Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.
[40]
Jiang, J. X.; Jin, Z. W.; Gao, F.; Sun, J.; Wang, Q.; Liu, S. Z. CsPbCl3-driven low-trap-density perovskite grain growth for > 20% solar cell efficiency. Adv. Sci. 2018, 5, 1800474.
[41]
Wang, Q. Fast voltage decay in perovskite solar cells caused by depolarization of perovskite layer. J. Phys. Chem. C 2018, 122, 4822-4827.
[42]
Liu, L. Y.; Wu, Y. G.; Li, M. Y.; Zong, X. P.; Sun, Z.; Liang, M.; Xue, S. Thieno[3, 2-b] indole-based hole transporting materials for perovskite solar cells with photovoltages exceeding 1.11 V. Chem. Commun. 2018, 54, 14025-14028.
[43]
Cai, F. L.; Yan, Y.; Yao, J. X.; Wang, P.; Wang, H.; Gurney, R. S.; Liu, D.; Wang, T. Ionic Additive engineering toward high-efficiency perovskite solar cells with reduced grain boundaries and trap density. Adv. Funct. Mater. 2018, 28, 1801985.
[44]
Gottesman, R.; Lopez-Varo, P.; Gouda, L.; Jimenez-Tejada, J. A.; Hu, J. G.; Tirosh, S.; Zaban, A.; Bisquert, J. Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. Chem 2016, 1, 776-789.
[45]
Kesavan, A. V.; Rao, A. D.; Ramamurthy, P. C. Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device. ACS Appl. Mater. Interfaces 2017, 9, 28774-28784.
[46]
Lin, Y. Z.; Shen, L.; Dai, J.; Deng, Y. H.; Wu, Y.; Bai, Y.; Zheng, X. P.; Wang, J. Y.; Fang, Y. J.; Wei, H. T. et al. π-conjugated Lewis base: Efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 2017, 29, 1604545.
[47]
Carr, J. A.; Chaudhary, S. The identification, characterization and mitigation of defect states in organic photovoltaic devices: A review and outlook. Energy Environ. Sci. 2013, 6, 3414-3438.
[48]
Chen, G. S.; Feng, J. G.; Gao, H. F.; Zhao, Y. J.; Pi, Y. Y.; Jiang, X. Y.; Wu, Y. C.; Jiang, L. Stable α-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater. 2019, 29, 1808741.
[49]
Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752-1759.