Journal Home > Volume 14 , Issue 2

Metal-based secondary building unit and the shape of organic ligands are the two crucial factors for determining the final topology of metal-organic materials. A careful choice of organic and inorganic structural building units occasionally produces unexpected structures, facilitating deeper fundamental understanding of coordination-driven self-assembly behind metal-organic materials. Here, we have synthesized a triangular metal-organic polygon (MOT-1), assembled from bulky tetramethyl terephthalate and Zr-based secondary building unit. Surprisingly, the Zr-based secondary building unit serves as an unusual ditopic Zr-connector, to form metal-organic polygon MOT-1, proven to be a good candidate for water adsorption with recyclability. This study highlights the interplay of the geometrically frustrated ligand and secondary building unit in controlling the connectivity of metal-organic polygon. Such a strategy can be further used to unveil a new class of metal-organic materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry

Show Author's information Jiyeon Kim1Dongsik Nam1Hiroshi Kitagawa2Dae-Woon Lim2,,( )Wonyoung Choe1,( )
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

Present address: Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493, Republic of Korea

Abstract

Metal-based secondary building unit and the shape of organic ligands are the two crucial factors for determining the final topology of metal-organic materials. A careful choice of organic and inorganic structural building units occasionally produces unexpected structures, facilitating deeper fundamental understanding of coordination-driven self-assembly behind metal-organic materials. Here, we have synthesized a triangular metal-organic polygon (MOT-1), assembled from bulky tetramethyl terephthalate and Zr-based secondary building unit. Surprisingly, the Zr-based secondary building unit serves as an unusual ditopic Zr-connector, to form metal-organic polygon MOT-1, proven to be a good candidate for water adsorption with recyclability. This study highlights the interplay of the geometrically frustrated ligand and secondary building unit in controlling the connectivity of metal-organic polygon. Such a strategy can be further used to unveil a new class of metal-organic materials.

Keywords: reticular chemistry, Zr-based metal-organic polygon, geometrical frustration, ditopic, secondary building unit

References(78)

[1]
M. O’Keeffe,; O. M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675-702.
[2]
T. R. Cook,; Y.-R. Zheng,; P. J. Stang, Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734-777.
[3]
B. Rungtaweevoranit,; C. S. Diercks,; M. J. Kalmutzki,; O. M. Yaghi, Spiers memorial lecture: Progress and prospects of reticular chemistry. Faraday Discuss. 2017, 201, 9-45.
[4]
T. Islamoglu,; S. Goswami,; Z. Y. Li,; A. J. Howarth,; O. K. Farha,; J. T. Hupp, Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc. Chem. Res. 2017, 50, 805-813.
[5]
P. Z. Moghadam,; A. Li,; S. B. Wiggin,; A. D. Tao,; A. G. P. Maloney,; P. A. Wood,; S. C. Ward,; D. Fairen-Jimenez, Development of a Cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618-2625.
[6]
O. M. Yaghi,; M. O’Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[7]
O. M. Yaghi,; M. J. Kalmutzki,; C. S. Diercks, Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, 2019.
DOI
[8]
M. O’Keeffe,; M. A. Peskov,; S. J. Ramsden,; O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782-1789.
[9]
M. J. Kalmutzki,; N. Hanikel,; O. M. Yaghi, Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.
[10]
Y. Bai,; Y. B. Dou,; L.-H. Xie,; W. Rutledge,; J.-R. Li,; H.-C. Zhou, Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.
[11]
A. J. Howarth,; Y. Y. Liu,; P. Li,; Z. Y. Li,; T. C. Wang,; J. T. Hupp,; O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.
[12]
M. Ding,; R. W. Flaig,; H.-L. Jiang,; O. M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-2828.
[13]
P. Deria,; J. E. Mondloch,; E. Tylianakis,; P. Ghosh,; W. Bury,; R. Q. Snurr,; J. T. Hupp,; O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc. 2013, 135, 16801-16804.
[14]
D. A. Gomez-Gualdron,; O. V. Gutov,; V. Krungleviciute,; B. Borah,; J. E. Mondloch,; J. T. Hupp,; T. Yildirim,; O. K. Farha;; R. Q. Snurr, Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mater. 2014, 26, 5632-5639.
[15]
C.-C. Cao,; C.-X. Chen,; Z.-W. Wei,; Q.-F. Qiu,; N.-X. Zhu,; Y.-Y. Xiong,; J.-J. Jiang,; D. W. Wang,; C.-Y. Su, Catalysis through dynamic spacer installation of multivariate functionalities in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 2589-2593.
[16]
C. A. Trickett,; T. M. O. Popp,; J. Su,; C. Yan,; J. Weisberg,; A. Huq,; P. Urban,; J. C. Jiang,; M. J. Kalmutzki,; Q. N. Liu, et al. Identification of the strong brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170-176.
[17]
Q. C. Xia,; Z. J. Li,; C. X. Tan,; Y. Liu,; W. Gong,; Y. Cui, Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 2017, 139, 8259-8266.
[18]
K. Na,; K. M. Choi,; O. M. Yaghi,; G. A. Somorjai, Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979-5983.
[19]
B. Wang,; X.-L. Lv,; D. W. Feng,; L.-H. Xie,; J. Zhang,; M. Li,; Y. B. Xie,; J.-R. Li,; H.-C. Zhou, Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 2016, 138, 6204-6216.
[20]
Z. C. Hu,; B. J. Deibert,; J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.
[21]
H.-L. Jiang,; D. W. Feng,; K. C. Wang,; Z.-Y. Gu,; Z. W. Wei,; Y.-P. Chen,; H.-C. Zhou, An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934-13938.
[22]
G. L. Liu,; Z. F. Ju,; D. Q. Yuan,; M. C. Hong, In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem. 2013, 52, 13815-13817.
[23]
D. Nam,; J. Huh,; J. Lee,; J. H. Kwak,; H. Y. Jeong,; K. Choi,; W. Choe, Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem. Sci. 2017, 8, 7765-7771.
[24]
G. L. Liu,; Y. D. Yuan,; J. Wang,; Y. D. Cheng,; S. B. Peh,; Y. X. Wang,; Y. H. Qian,; J. Q. Dong,; D. Q. Yuan,; D. Zhao, Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages. J. Am. Chem. Soc. 2018, 140, 6231-6234.
[25]
J. J. Liu,; W. J. Duan,; J. Song,; X. X. Guo,; Z. F. Wang,; X. L. Shi,; J. J. Liang,; J. Wang,; P. Cheng,; Y. Chen, et al. Self-healing hyper-cross-linked metal-organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc. 2019, 141, 12064-12070.
[26]
M. Sun,; Q.-Q. Wang,; C. Qin,; C.-Y. Sun,; X.-L. Wang,; Z.-M. Su, An amine-functionalized zirconium metal-organic polyhedron photocatalyst with high visible-light activity for hydrogen production. Chem.—Eur. J. 2019, 25, 2824-2830.
[27]
J. I. Choi,; H. Chun,; M. S. Lah, Zirconium-formate macrocycles and supercage: Molecular packing versus MOF-like network for water vapor sorption. J. Am. Chem. Soc. 2018, 140, 10915-10920.
[28]
D. Höhne,; E. Herdtweck,; A. Pöthig,; F. E. Kühn, Synthesis and characterization of dimeric and square-shaped dicarboxylate-bridged dimolybdenum(II) coordination compounds. Inorg. Chim. Acta 2015, 424, 210-215.
[29]
X.-M. Cai,; D. Höhne,; M. Köberl,; M. Cokoja,; A. Pöthig,; E. Herdtweck,; S. Haslinger,; W. A. Herrmann,; F. E. Kühn, Synthesis and characterization of dimolybdenum(II) complexes connected by carboxylate linkers. Organometallics 2013, 32, 6004-6011.
[30]
J.-R. Li,; A. A. Yakovenko,; W. G. Lu,; D. J. Timmons,; W. J. Zhuang,; D. Q. Yuan,; H.-C. Zhou, Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers. J. Am. Chem. Soc. 2010, 132, 17599-17610.
[31]
M. H. Chisholm,; N. J. Patmore,; C. R. Reed,; N. Singh, Oxalate bridged triangles incorporating Mo24+ units. Electronic structure and bonding. Inorg. Chem. 2010, 49, 7116-7122.
[32]
F. A. Cotton,; C. Y. Liu,; C. A. Murillo,; X. P. Wang, Dimolybdenum-containing molecular triangles and squares with diamidate linkers: Structural diversity and complexity. Inorg. Chem. 2006, 45, 2619-2626.
[33]
M. H. Chisholm,; A. M. Macintosh, Linking multiple bonds between metal atoms: Clusters, dimers of “dimers”, and higher ordered assemblies. Chem. Rev. 2005, 105, 2949-2976.
[34]
F. A. Cotton,; J. P. Donahue,; C. A. Murillo, The first supramolecular assemblies comprised of dimetal units and chiral dicarboxylates. Inorg. Chem. Commun. 2002, 5, 59-63.
[35]
F. A. Cotton,; C. Lin,; C. A. Murillo, A neutral triangular supramolecule formed by Mo24+ units. Inorg. Chem. 2001, 40, 575-577.
[36]
F. A. Cotton,; C. Lin,; C. A. Murillo, Supramolecular squares with Mo24+ corners. Inorg. Chem. 2001, 40, 478-484.
[37]
M. Köberl,; M. Cokoja,; W. A. Herrmann,; F. E. Kühn, From molecules to materials: Molecular paddle-wheel synthons of macromolecules, cage compounds and metal-organic frameworks. Dalton Trans. 2011, 40, 6834-6859.
[38]
F. A. Cotton,; C. Lin,; C. A. Murillo, Supramolecular arrays based on dimetal building units. Acc. Chem. Res. 2001, 34, 759-771.
[39]
F. A. Cotton,; L. M. Daniels,; C. Lin,; C. A. Murillo, Square and triangular arrays based on Mo24+ and Rh24+ units. J. Am. Chem. Soc. 1999, 121, 4538-4539.
[40]
F. A. Cotton,; L. M. Daniels,; C. Lin,; C. A. Murillo,; S.-Y. Yu, Supramolecular squares with Rh24+ corners. J. Chem. Soc., Dalton Trans. 2001, 502-504.
[41]
J. F. Bickley,; R. P. Bonar-Law,; C. Femoni,; E. J. MacLean,; A. Steiner,; S. J. Teat, Dirhodium(II) carboxylate complexes as building blocks. synthesis and structures of square boxes with tilted walls. J. Chem. Soc., Dalton Trans. 2000, 4025-4027.
[42]
R. P. Bonar-Law,; T. D. McGrath,; N. Singh,; J. F. Bickley,; A. Steiner, Dinuclear complexes as connectors for carboxylates. Self-assembly of a molecular box. Chem. Commun. 1999, 2457-2458.
[43]
X. K. Song,; X. F. Liu,; M. Oh,; M. S. Lah, A double-walled triangular metal-organic macrocycle based on a [Cu2(COO)4] square paddle-wheel secondary building unit. Dalton Trans. 2010, 39, 6178-6180.
[44]
B. Wisser,; A.-C. Chamayou,; R. Miller,; W. Scherer,; C. Janiak, A chiral C3-symmetric hexanuclear triangular-prismatic copper(II) cluster derived from a highly modular dipeptidic N,N′-terephthaloyl-bis(S- aminocarboxylato) ligand. CrystEngComm 2008, 10, 461-464.
[45]
Y. T. Zhang,; X. L. Wang,; S. B. Li,; B. Q. Song,; K. Z. Shao,; Z. M. Su, Ligand-directed assembly of polyoxovanadate-based metal-organic polyhedra. Inorg. Chem. 2016, 55, 8770-8775.
[46]
Z. X. Zhang,; W.-Y. Gao,; L. Wojtas,; Z. J. Zhang,; M. J. Zaworotko, A new family of anionic organic-inorganic hybrid doughnut-like nanostructures. Chem. Commun. 2015, 51, 9223-9226.
[47]
V. Guillerm,; D. Maspoch, Geometry mismatch and reticular chemistry: Strategies to assemble metal-organic frameworks with non-default topologies. J. Am. Chem. Soc. 2019, 141, 16517-16538.
[48]
H. L. Li,; M. Eddaoudi,; T. L. Groy,; O. M. Yaghi, Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571-8572.
[49]
H. Furukawa,; J. Kim,; N. W. Ockwig,; M. O’Keeffe,; O. M. Yaghi, Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 2008, 130, 11650-11661.
[50]
M. Eddaoudi,; J. Kim,; M. O’Keeffe,; O. M. Yaghi, Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A framework deliberately designed to have the NbO structure type. J. Am. Chem. Soc. 2002, 124, 376-377.
[51]
M. Eddaoudi,; J. Kim,; J. B. Wachter,; H. K. Chae,; M. O’Keeffe,; O. M. Yaghi, Porous metal-organic polyhedra:  25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368-4369.
[52]
V. Bon,; I. Senkovska,; I. A. Baburin,; S. Kaskel, Zr- and Hf-based metal-organic frameworks: Tracking down the polymorphism. Cryst. Growth Des. 2013, 13, 1231-1237.
[53]
H. Furukawa,; F. Gándara,; Y. B. Zhang,; J. C. Jiang,; W. L. Queen,; M. R. Hudson,; O. M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
[54]
J. H. Cavka,; S. Jakobsen,; U. Olsbye,; N. Guillou,; C. Lamberti,; S. Bordiga,; K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
[55]
Z. F. Ju,; G. L. Liu,; Y.-S. Chen,; D. Q. Yuan,; B. L. Chen, From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem.—Eur. J. 2017, 23, 4774-4777.
[56]
H. S. Lee,; S. Jee,; R. Kim,; H.-T. Bui,; B. Kim,; J.-K. Kim,; K. S. Park,; W. Choi,; W. Kim,; K. M. Choi, A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci. 2020, 13, 519-526.
[57]
J. J. Jiao,; C. X. Tan,; Z. J. Li,; Y. Liu,; X. Han,; Y. Cui, Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 2018, 140, 2251-2259.
[58]
G. L. Liu,; M. Zeller,; K. Z. Su,; J. D. Pang,; Z. F. Ju,; D. Q. Yuan,; M. C. Hong Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem.—Eur. J. 2016, 22, 17345-17350.
[59]
S. M. Jansze,; G. Cecot,; M. D. Wise,; K. O. Zhurov,; T. K. Ronson,; A. M. Castilla,; A. Finelli,; P. Pattison,; E. Solari,; R. Scopelliti, et al. Ligand aspect ratio as a decisive factor for the self-assembly of coordination cages. J. Am. Chem. Soc. 2016, 138, 2046-2054.
[60]
B. Roy,; R. Saha,; A. K. Ghosh,; Y. Patil,; P. S. Mukherjee, Versatility of two diimidazole building blocks in coordination-driven self-assembly. Inorg. Chem. 2017, 56, 3579-3588.
[61]
D. Samanta,; A. Chowdhury,; P. S. Mukherjee, Covalent postassembly modification and water adsorption of Pd3 self-assembled trinuclear barrels. Inorg. Chem. 2016, 55, 1562-1568.
[62]
D. J. Tranchemontagne,; Z. Ni,; M. O’Keeffe,; O. M. Yaghi, Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136-5147.
[63]
G. Cecot,; M. Marmier,; S. Geremia,; R. De Zorzi,; A. V. Vologzhanina,; P. Pattison,; E. Solari,; F. Fadaei Tirani,; R. Scopelliti,; K. Severin, The intricate structural chemistry of MII2nLn-type assemblies. J. Am. Chem. Soc. 2017, 139, 8371-8381.
[64]
G. Gupta,; A. Das,; K. C. Park,; A. Tron,; H. Kim,; J. Mun,; N. Mandal,; K.-W. Chi,; C. Y. Lee, Self-assembled novel BODIPY-based palladium supramolecules and their cellular localization. Inorg. Chem. 2017, 56, 4615-4621.
[65]
M. Fujita,; O. Sasaki,; T. Mitsuhashi,; T. Fujita,; J. Yazaki,; K. Yamaguchi,; K. Ogura, On the structure of transition-metal-linked molecular squares. Chem. Commun. 1996, 1535-1536.
[66]
B. J. Holliday,; C. A. Mirkin, Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem., Int. Ed. 2001, 40, 2022-2043.
[67]
W. Wang,; Y.-X. Wang,; H.-B. Yang, Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656-2693.
[68]
M. Fujita,; S, Nagao,; M. Iida,; K. Ogata,; K. Ogura, Palladium(II)- directed assembly of macrocyclic dinuclear complexes composed of (en)Pd2+ and bis(4-pyridyl)-substituted bidentate ligands. Remarkable ability for molecular recognition of electron-rich aromatic guests. J. Am. Chem. Soc. 1993, 115, 1574-1576.
[69]
L. N. Yu,; X. F. Jiang,; S. Y. Yu, Self-assembly of chiral nano-bowl from chiral Pd-complex building corners and 4,7-phenanthroline linkers. Chin. J. Chem. 2015, 33, 152-155.
[70]
S. Leininger,; J. Fan,; M. Schmitz,; P. J. Stang, Archimedean solids: Transition metal mediated rational self-assembly of supramolecular-truncated tetrahedra. Proc. Natl. Acad. Sci. USA 2000, 97, 1380-1384.
[71]
M. Fujita,; D. Oguro,; M. Miyazawa,; H. Oka,; K. Yamaguchi,; K. Ogura, Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 1995, 378, 469-471.
[72]
D. C. Caskey,; T. Yamamoto,; C. Addicott,; R. K. Shoemaker,; J. Vacek,; A. M. Hawkridge,; D. C. Muddiman,; G. S. Kottas,; J. Michl,; P. J. Stang, Coordination-driven face-directed self-assembly of trigonal prisms. Face-based conformational chirality. J. Am. Chem. Soc. 2008, 130, 7620-7628.
[73]
Y.-R. Zheng,; Z. G. Zhao,; H. Kim,; M. Wang,; K. Ghosh,; J. B. Pollock,; K.-W. Chi,; P. J. Stang, Coordination-driven self-assembly of truncated tetrahedra capable of encapsulating 1,3,5-triphenylbenzene. Inorg. Chem. 2010, 49, 10238-10240.
[74]
F. A. Cotton,; C. Lin,; C. A. Murillo, Connecting pairs of dimetal units to form molecular loops. Inorg. Chem. 2001, 40, 472-477.
[75]
G. R. Lorzing,; E. J. Gosselin,; B. S. Lindner,; R. Bhattacharjee,; G. P. A. Yap,; S. Caratzoulas,; E. D. Bloch, Design and synthesis of capped-paddlewheel-based porous coordination cages. Chem. Commun. 2019, 55, 9527-9530.
[76]
F. A. Cotton,; L. M. Daniels,; C. Lin,; C. A. Murillo, The designed ‘self-assembly’ of a three-dimensional molecule containing six quadruply-bonded Mo24+ units. Chem. Commun. 1999, 841-842.
[77]
M. Nelson,; E. Raschke,; M. McClelland, Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1993, 21, 3139-3154.
[78]
P. M. Barron,; C. A. Wray,; C. H. Hu,; Z. Y. Guo,; W. Choe, A bioinspired synthetic approach for building metal-organic frameworks with accessible metal centers. Inorg. Chem. 2010, 49, 10217-10219.
File
12274_2020_2830_MOESM1_ESM.pdf (2.1 MB)
12274_2020_2830_MOESM2_ESM.cif (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 March 2020
Accepted: 24 April 2020
Published: 22 May 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Public Technology Program based on Environmental Policy Program, funded by Korea Ministry of Environment (MOE) (No. 2018000210002) and National Research Foundation (NRF) of Korea (Nos. NRF-2016R1A5A1009405 and NRF-2017M3C1B4051161). D.-W. L. and H. K. acknowledge the support from the ACCEL program, Japan Science and Technology Agency (JST), JPMJAC1501. J. K. acknowledges the support from NRF Grant funded by the Korean Government (No. NRF-2018H1A2A1061391-Global Ph.D. Fellowship Program). We acknowledge the Pohang Accelerator Laboratory (PAL) for 2D beamline use (2019- 1st-2D-038). We would like to thank Hyeonsoo Cho for providing 3D models for possible structures shown in Fig. 8.

Return