Journal Home > Volume 13 , Issue 8

Efficient, robust and cost-effective bifunctional oxygen electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are of vital importance to the widespread utilization of Zn-air batteries. Here we report the fabrication of a bubble-like N,S-codoped porous carbon nanofibers with encapsulated fine Fe/Fe5C2 nanocrystals (~ 10 nm) (FeNSCs) by a facile one-pot pyrolysis strategy. The novel FeNSC nanostructures with high Fe content (37.3 wt.%), and synergetic N and S doping demonstrate remarkable ORR and OER catalytic activities in alkaline condition. Particularly for ORR, the optimal FeNSC catalyst exhibits superior performance in terms of current density and durability in both alkaline and acidic media. Moreover, as catalysts on the air electrodes of Zn-air batteries, the optimal FeNSCs show a high peak power density of 59.6 mW/cm2 and extraordinary discharge-charge cycling performance for 200 h with negligible voltage gap change of only 8% at current density of 20 mA/cm, surpassing its noble metal counterpart (i.e. Pt). The impressive battery stability can be attributed to favorable electron transfer resulting from appropriate graphitization of the bubble-like carbon nanofibers and thorough protection of Fe/Fe5C2 nanoparticles by carbon wrapping to prevent oxidation, agglomeration and dissolution of Fe nanoparticles during battery cycling. The present FeNSC catalyst, which is highly active, robust yet affordable, shows promising prospects in large-scale applications, such as metal-air batteries and fuel cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bubble-like Fe-encapsulated N,S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries

Show Author's information Yiyi She1,§Jin Liu1,§Hongkang Wang2Li Li3Jinsong Zhou1Michael K.H. Leung1( )
Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
Center of Nanomaterials for Renewable Energy (CNRE), State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi’an 710049, China
School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, China

§ Yiyi She and Jin Liu contributed equally to this work.

Abstract

Efficient, robust and cost-effective bifunctional oxygen electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are of vital importance to the widespread utilization of Zn-air batteries. Here we report the fabrication of a bubble-like N,S-codoped porous carbon nanofibers with encapsulated fine Fe/Fe5C2 nanocrystals (~ 10 nm) (FeNSCs) by a facile one-pot pyrolysis strategy. The novel FeNSC nanostructures with high Fe content (37.3 wt.%), and synergetic N and S doping demonstrate remarkable ORR and OER catalytic activities in alkaline condition. Particularly for ORR, the optimal FeNSC catalyst exhibits superior performance in terms of current density and durability in both alkaline and acidic media. Moreover, as catalysts on the air electrodes of Zn-air batteries, the optimal FeNSCs show a high peak power density of 59.6 mW/cm2 and extraordinary discharge-charge cycling performance for 200 h with negligible voltage gap change of only 8% at current density of 20 mA/cm, surpassing its noble metal counterpart (i.e. Pt). The impressive battery stability can be attributed to favorable electron transfer resulting from appropriate graphitization of the bubble-like carbon nanofibers and thorough protection of Fe/Fe5C2 nanoparticles by carbon wrapping to prevent oxidation, agglomeration and dissolution of Fe nanoparticles during battery cycling. The present FeNSC catalyst, which is highly active, robust yet affordable, shows promising prospects in large-scale applications, such as metal-air batteries and fuel cells.

Keywords: oxygen reduction reaction, oxygen evolution reaction, heteroatom doping, bifunctional catalyst, FeNSC catalyst

References(40)

[1]
Gu, P.; Zheng, M. B.; Zhao, Q. X.; Xiao, X.; Xue, H. G.; Pang, H. Rechargeable zinc-air batteries: A promising way to green energy. J. Mater. Chem. A 2017, 5, 7651-7666.
[2]
Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.
[3]
Kwon, N. H.; Kim, M.; Jin, X. Y.; Lim, J.; Kim, I. Y.; Lee, N. S.; Kim, H.; Hwang, S. J. A rational method to kinetically control the rate-determining step to explore efficient electrocatalysts for the oxygen evolution reaction. NPG Asia Mater. 2018, 10, 659-669.
[4]
Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.
[5]
Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.
[6]
Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.
[7]
Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.
[8]
Zhang, C.; Zhang, W.; Zheng, W. T. Transition metal-nitrogen-carbon active site for oxygen reduction electrocatalysis: Beyond the fascinations of TM-N4. ChemCatChem 2019, 11, 655-668.
[9]
Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673-10677.
[10]
Lei, C. J.; Chen, H. Q.; Cao, J. H.; Yang, J.; Qiu, M.; Xia, Y.; Yuan, C.; Yang, B.; Li, Z. J.; Zhang, X. W. et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 2018, 8, 1801912.
[11]
Rana, M.; Mondal, S.; Sahoo, L.; Chatterjee, K.; Karthik, P. E.; Gautam, U. K. Emerging materials in heterogeneous electrocatalysis involving oxygen for energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 33737-33767.
[12]
Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.
[13]
Wang, J.; Wu, H. H.; Gao, D. F.; Miao, S.; Wang, G. X.; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 2015, 13, 387-396.
[14]
Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.
[15]
Wang, T. T.; Kou, Z. K.; Mu, S. C.; Liu, J. P.; He, D. P.; Amiinu, I. S.; Meng, W.; Zhou, K.; Luo, Z. X.; Chaemchuen, S. et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.
[16]
Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570-3578.
[17]
She, Y. Y.; Lu, Z. G.; Ni, M.; Li, L.; Leung, M. K. H. Facile synthesis of nitrogen and sulfur codoped carbon from ionic liquid as metal-free catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 7214-7221.
[18]
Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[19]
Guan, B. Y.; Yu, L.; Lou, X. W. D. Formation of single-holed Cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 2017, 4, 1700247.
[20]
Cheng, S.; Wu, J. C. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 2013, 92, 22-26.
[21]
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893-4908.
[22]
Danmaliki, G. I.; Saleh, T. A. Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon. Chem. Eng. J. 2017, 307, 914-927.
[23]
Wang, Q. C.; Lei, Y. P.; Chen, Z. Y.; Wu, N.; Wang, Y. B.; Wang, B.; Wang, Y. D. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 516-526.
[24]
Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436-1439.
[25]
Ai, L. H.; Su, J. F.; Wang, M.; Jiang, J. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: An efficient bifunctional electrocatalyst for overall water splitting. ACS Sustainable Chem. Eng. 2018, 6, 9912-9920.
[26]
Hu, E. L.; Yu, X. Y.; Chen, F.; Wu, Y. D.; Hu, Y.; Lou, X. W. D. Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction. Adv. Energy Mater. 2018, 8, 1702476.
[27]
ALOthman, Z. A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874-2902.
[28]
Ye, Z. T.; Qie, Y. Q.; Fan, Z. P.; Liu, Y. X.; Shi, Z.; Yang, H. Soft magnetic Fe5C2-Fe3C@C as an electrocatalyst for the hydrogen evolution reaction. Dalton Trans. 2019, 48, 4636-4642.
[29]
Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708-5717.
[30]
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.
[31]
Li, X. M.; Lau, S. P.; Tang, L. B.; Ji, R. B.; Yang, P. Z. Sulphur doping: A facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale 2014, 6, 5323-5328.
[32]
Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. G.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.
[33]
Qiao, M.; Ferrero, G. A.; Fernández Velasco, L.; Vern Hor, W.; Yang, Y.; Luo, H.; Lodewyckx, P.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M. Boosting the oxygen reduction electrocatalytic performance of nonprecious metal nanocarbons via triple boundary engineering using protic ionic liquids. ACS Appl. Mater. Interfaces 2019, 11, 11298-11305.
[34]
Dun, R. M.; Hao, M. G.; Su, Y. M.; Li, W. M. Fe-N-doped hierarchical mesoporous carbon nanomaterials as efficient catalysts for oxygen reduction in both acidic and alkaline media. J. Mater. Chem. A 2019, 7, 12518-12525.
[35]
She, Y. Y.; Chen, J. F.; Zhang, C. X.; Lu, Z. G.; Ni, M.; Sit, P. H. L.; Leung, M. K. H. Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms. Appl. Energy 2018, 225, 513-521.
[36]
Schonvogel, D.; Hülstede, J.; Wagner, P.; Dyck, A.; Agert, C.; Wark, M. Durability of electrocatalysts for ORR: Pt on nanocomposite of reduced graphene oxide with FTO versus Pt/C. J. Electrochem. Soc. 2018, 165, F3373-F3382.
[37]
Liu, G. H.; Li, J. D.; Fu, J.; Jiang, G. P.; Lui, G.; Luo, D.; Deng, Y. P.; Zhang, J.; Cano, Z. P.; Yu, A. P. et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 2019, 31, 1806761.
[38]
Sumboja, A.; Lübke, M.; Wang, Y.; An, T.; Zong, Y.; Liu, Z. L. All-solid-state, foldable, and rechargeable Zn-air batteries based on manganese oxide grown on graphene-coated carbon cloth air cathode. Adv. Energy Mater. 2017, 7, 1700927.
[39]
Yang, L. T.; Zhu, X. Z.; Li, X. H.; Zhao, X. B.; Pei, K.; You, W. B.; Li, X.; Chen, Y. J.; Lin, C. F.; Che, R. C. Conductive copper niobate: Superior Li+-storage capability and novel Li+-transport mechanism. Adv. Energy Mater. 2019, 9, 1902174.
[40]
Fu, J.; Lee, D. U.; Hassan, F. M.; Yang, L.; Bai, Z. Y.; Park, M. G.; Chen, Z. W. Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv. Mater. 2015, 27, 5617-5622.
File
12274_2020_2828_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 December 2019
Revised: 21 April 2020
Accepted: 23 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The research presented in this paper was funded by Project 21875200 supported by National Natural Science Foundation of China. The research was also supported by Natural Science Foundation of Jiangsu Province (No. BK20170314).

Return