Journal Home > Volume 13 , Issue 8

Antibacterial nanomaterials have attracted growing interest for bacterial infection therapy. However, most nanomaterials eliminate bacteria either physically or chemically, which hampers their efficacy when dealing with multidrug-resistant bacteria. To overcome this, we integrated copper sulfide (CuS) nanoparticles with active graphene oxide nanosheets (GO NSs) to synthesize a superior nanocomposite (CuS/GO NC) that acts both physically and chemically on the bacteria. CuS/GO NC was produced using a facile hydrothermal method, whereby the CuS nanoparticles grew and were uniformly dispersed on the GO NSs in situ. We found that the CuS/GO NC possesses a unique needle-like morphology that physically damages the bacterial cell membrane. CuS/GO NC also exhibits high oxidase- and peroxidase-like activity, ensuring efficient generation of the reactive oxygen species •OH from H2O2, which kills bacteria chemically. These features endow the CuS/GO NC with excellent antibacterial capabilities to kill multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) with only a single dose. Additionally, it was found that the CuS/GO NC accelerated the healing of infected wounds in vivo owing to its good biocompatibility as well as facilitation of cell migration and collagen secretion. This study provides a new strategy to combine the physical and chemical antibacterial modes of nanomaterials to develop more effective therapies to combat multidrug-resistant bacterial infections.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets

Show Author's information Wanshun Wang1,§Binglin Li1,§Huili Yang1,§Zefeng Lin1Lingling Chen1Zhan Li1Jiayuan Ge1Tao Zhang1Hong Xia1( )Lihua Li2( )Yao Lu1,3( )
Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The Second Clinical Medical College and Department of Graduate School of Guangzhou University of Chinese Medicine, The Second School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China
Orthopedic Centre, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

§ Wanshun Wang, Binglin Li, and Huili Yang contributed equally to this work.

Abstract

Antibacterial nanomaterials have attracted growing interest for bacterial infection therapy. However, most nanomaterials eliminate bacteria either physically or chemically, which hampers their efficacy when dealing with multidrug-resistant bacteria. To overcome this, we integrated copper sulfide (CuS) nanoparticles with active graphene oxide nanosheets (GO NSs) to synthesize a superior nanocomposite (CuS/GO NC) that acts both physically and chemically on the bacteria. CuS/GO NC was produced using a facile hydrothermal method, whereby the CuS nanoparticles grew and were uniformly dispersed on the GO NSs in situ. We found that the CuS/GO NC possesses a unique needle-like morphology that physically damages the bacterial cell membrane. CuS/GO NC also exhibits high oxidase- and peroxidase-like activity, ensuring efficient generation of the reactive oxygen species •OH from H2O2, which kills bacteria chemically. These features endow the CuS/GO NC with excellent antibacterial capabilities to kill multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) with only a single dose. Additionally, it was found that the CuS/GO NC accelerated the healing of infected wounds in vivo owing to its good biocompatibility as well as facilitation of cell migration and collagen secretion. This study provides a new strategy to combine the physical and chemical antibacterial modes of nanomaterials to develop more effective therapies to combat multidrug-resistant bacterial infections.

Keywords: wound healing, nanozyme, multidrug-resistant bacteria, antibacterial nanomaterials

References(55)

[1]
Malani, P. N. National burden of invasive methicillin-resistant Staphylococcus aureus infection. JAMA 2014, 311, 1438-1439.
[2]
Van Boeckel, T. P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N. G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365, eaaw1944.
[3]
Lee, A. S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033.
[4]
Matthiessen, L.; Bergström, R.; Dustdar, S.; Meulien, P.; Draghia-Akli, R. Increased momentum in antimicrobial resistance research. Lancet 2016, 388, 865.
[5]
Turner, N. A.; Sharma-Kuinkel, B. K.; Maskarinec, S. A.; Eichenberger, E. M.; Shah, P. P.; Carugati, M.; Holland, T. L.; Fowler, V. G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203-218.
[6]
Peacock, S. J.; Paterson, G. K. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577-601.
[7]
Dolgin, E. ‘Game changer’ antibiotic and others in works for superbug. Nat. Med. 2011, 17, 10.
[8]
Lakhundi, S.; Zhang, K. Y. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18.
[9]
Singer, A. J.; Talan, D. A. Management of skin abscesses in the era of methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 2014, 370, 1039-1047.
[10]
Aliberti, S.; Reyes, L. F.; Faverio, P.; Sotgiu, G.; Dore, S.; Rodriguez, A. H.; Soni, N. J.; Restrepo, M. I.; GLIMP Investigators. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): An international, observational cohort study. Lancet Infect. Dis. 2016, 16, 1364-1376.
[11]
Galar, A.; Weil, A. A.; Dudzinski, D. M.; Muñoz, P.; Siedner, M. J. Methicillin-resistant Staphylococcus aureus prosthetic valve endocarditis: Pathophysiology, epidemiology, clinical presentation, diagnosis, and management. Clin. Microbiol. Rev. 2019, 32, e00041-18.
[12]
Yaw, L. K.; Robinson, J. O.; Ho, K. M. A comparison of long-term outcomes after meticillin-resistant and meticillin-sensitive Staphylococcus aureus bacteraemia: An observational cohort study. Lancet Infect. Dis. 2014, 14, 967-975.
[13]
Krishnan, V.; Amritanand, R.; Sundararaj, G. Methicillin-resistant Staphylococcus aureus as a cause of lumbar facet joint septic arthritis: A report of two cases. J. Bone Jt. Surg. 2010, 92, 465-468.
[14]
Akins, P. T.; Belko, J.; Banerjee, A.; Guppy, K.; Herbert, D.; Slipchenko, T.; DeLemos, C.; Hawk, M. Perioperative management of neurosurgical patients with methicillin-resistant Staphylococcus aureus. J. Neurosurg. 2010, 112, 354-361.
[15]
Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803-1815.
[16]
Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415-427.
[17]
Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594-601.
[18]
Zou, X. F.; Zhang, L.; Wang, Z. J.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064-2077.
[19]
Rizzello, L.; Pompa, P. P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2014, 43, 1501-1518.
[20]
Perelshtein, I.; Lipovsky, A.; Perkas, N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695-707.
[21]
Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789-799.
[22]
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.
[23]
Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat. Commun. 2018, 9, 129.
[24]
Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202-6210.
[25]
Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097-1104.
[26]
Dickinson, B. C.; Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 2011, 7, 504-511.
[27]
Halbus, A. F.; Horozov, T. S.; Paunov, V. N. Strongly enhanced antibacterial action of copper oxide nanoparticles with boronic acid surface functionality. ACS Appl. Mater. Interfaces 2019, 11, 12232-12243.
[28]
Seo, Y.; Hwang, J.; Lee, E.; Kim, Y. J.; Lee, K.; Park, C.; Choi, Y.; Jeon, H.; Choi, J. Engineering copper nanoparticles synthesized on the surface of carbon nanotubes for anti-microbial and anti-biofilm applications. Nanoscale 2018, 10, 15529-15544.
[29]
Ren, T. T.; Yang, M. Q.; Wang, K. K.; Zhang, Y.; He, J. H. CuO nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property. ACS Appl. Mater. Interfaces 2018, 10, 25717-25725.
[30]
Zhao, S. C.; Li, L.; Wang, H.; Zhang, Y. D.; Cheng, X. G.; Zhou, N.; Rahaman, M. N.; Liu, Z. T.; Huang, W. H.; Zhang, C. Q. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 2015, 53, 379-391.
[31]
Zhang, J.; Wu, H. E.; He, F. P.; Wu, T. T.; Zhou, L.; Ye, J. D. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions. Mater. Sci. Eng. C 2019, 99, 1199-1212.
[32]
Lu, Y.; Li, L. H.; Zhu, Y.; Wang, X. L.; Li, M.; Lin, Z. F.; Hu, X. M.; Zhang, Y.; Yin, Q. S.; Xia, H. et al. Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Appl. Mater. Interfaces 2018, 10, 127-138.
[33]
Xu, C. K.; Chen, J. R.; Li, L. H.; Pu, X. B.; Chu, X.; Wang, X. L.; Li, M.; Lu, Y.; Zheng, X. F. Promotion of chondrogenic differentiation of mesenchymal stem cells by copper: Implications for new cartilage repair biomaterials. Mater. Sci. Eng. C 2018, 93, 106-114.
[34]
Huang, J. L.; Zhou, J. F.; Zhuang, J. Y.; Gao, H. Z.; Huang, D. H.; Wang, L. X.; Wu, W. L.; Li, Q. B.; Yang, D. P.; Han, M. Y. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of gram-positive and-negative bacteria. ACS Appl. Mater. Interfaces 2017, 9, 36606-36614.
[35]
Wang, H. Y.; Hua, X. W.; Wu, F. G.; Li, B. L.; Liu, P. D.; Gu, N.; Wang, Z. F.; Chen, Z. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: Potential anticancer and antibacterial applications. ACS Appl. Mater. Interfaces 2015, 7, 7082-7092.
[36]
Broglie, J. J.; Alston, B.; Yang, C.; Ma, L.; Adcock, A. F.; Chen, W.; Yang, L. J. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One 2015, 10, e0141050.
[37]
Moore, J. D.; Stegemeier, J. P.; Bibby, K.; Marinakos, S. M.; Lowry, G. V.; Gregory, K. B. Impacts of pristine and transformed Ag and Cu engineered nanomaterials on surficial sediment microbial communities appear short-lived. Environ. Sci. Technol. 2016, 50, 2641-2651.
[38]
Wang, W. S.; Cheng, X. H.; Liao, J. W.; Lin, Z. F.; Chen, L. L.; Liu, D. D.; Zhang, T.; Li, L. H.; Lu, Y.; Xia, H. Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu9S8 nanoparticles. ACS Biomater. Sci. Eng. 2019, 5, 6243-6253.
[39]
Qiao, Y.; Ping, Y.; Zhang, H. B.; Zhou, B.; Liu, F. Y.; Yu, Y. H.; Xie, T. T.; Li, W. L.; Zhong, D. N.; Zhang, Y. Z. et al. Laser-activatable CuS nanodots to treat multidrug-resistant bacteria and release copper ion to accelerate healing of infected chronic nonhealing wounds. ACS Appl. Mater. Interfaces 2019, 11, 3809-3822.
[40]
Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W. J.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797-13808.
[41]
Xu, C.; Wang, X.; Yang, L. C.; Wu, Y. P. Fabrication of a graphene- cuprous oxide composite. J. Solid State Chem. 2009, 182, 2486-2490.
[42]
Bai, J.; Liu, Y. W.; Jiang, X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 2014, 35, 5805-5813.
[43]
Lee, I. C.; Ko, J. W.; Park, S. H.; Lim, J. O.; Shin, I. S.; Moon, C.; Kim, S. H.; Heo, J. D.; Kim, J. C. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int. J. Nanomed. 2016, 11, 2883.
[44]
Ning, C. Y.; Wang, X. L.; Li, L. H.; Zhu, Y.; Li, M.; Yu, P.; Zhou, L.; Zhou, Z. N.; Chen, J. Q.; Tan, G. X. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: Implications for a new antibacterial mechanism. Chem. Res. Toxicol. 2015, 28, 1815-1822.
[45]
Dashnyam, K.; Buitrago, J. O.; Bold, T.; Mandakhbayar, N.; Perez, R. A.; Knowles, J. C.; Lee, J.; Kim, H. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater. Sci. 2019, 7, 5221-5231.
[46]
Dai, X. M.; Zhao, Y.; Yu, Y. J.; Chen, X. L.; Wei, X. S.; Zhang, X. E.; Li, C. X. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 30470-30479.
[47]
Lu, Y.; Li, L. H.; Lin, Z. F.; Wang, L. P.; Lin, L. J.; Li, M.; Zhang, Y.; Yin, Q. S.; Li, Q.; Xia, H. A new treatment modality for rheumatoid arthritis: Combined photothermal and photodynamic therapy using Cu7.2S4 nanoparticles. Adv. Healthc. Mater. 2018, 7, 1800013.
[48]
Lu, X. L.; Feng, X. D.; Werber, J. R.; Chu, C. H.; Zucker, I.; Kim, J. H.; Osuji, C. O.; Elimelech, M. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. USA 2017, 114, E9793-E9801.
[49]
Karahan, H. E.; Wiraja, C.; Xu, C. J.; Wei, J.; Wang, Y. L.; Wang, L.; Liu, F.; Chen, Y. Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv. Healthc. Mater. 2018, 7, 1701406.
[50]
Chen, W. Y.; Chang, H. Y.; Lu, J. K.; Huang, Y. C.; Harroun, S. G.; Tseng, Y. T.; Li, Y. J.; Huang, C. C.; Chang, H. T. Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater. 2015, 25, 7189-7199.
[51]
Lu, N.; Wang, L. Q.; Lv, M.; Tang, Z. S.; Fan, C. H. Graphene-based nanomaterials in biosystems. Nano Res. 2019, 12, 247-264.
[52]
Zheng, K. Y.; Li, K. R.; Chang, T. H.; Xie, J. P.; Chen, P. Y. Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv. Funct. Mater. 2019, 29, 1904603.
[53]
Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M. J.; Fernández, M. D. Graphene oxide-silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials 2020, 10, 376.
[54]
Wang, Y. W.; Cao, A. N.; Jiang, Y.; Zhang, X.; Liu, J. H.; Liu, Y. F.; Wang, H. F. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 2014, 6, 2791-2798.
[55]
Lin, Z. F.; Wu, T. T.; Wang, W. S.; Li, B. L.; Wang, M.; Chen, L. L.; Xia, H.; Zhang, T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 2019, 140, 330-342.
File
12274_2020_2824_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 March 2020
Revised: 10 April 2020
Accepted: 19 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81972080 and 81902198), China Postdoctoral Science Foundation (Nos. 2018M640776, 2019M662980, and BX20190150), Natural Science Foundation of Guangdong Province (Nos. 2015A030312004 and 2020A1515010398), Science and Technology Planning Project of Guangdong Province (Nos. 2014A020215025 and 2017B030314139), Medical Research Foundation of Guangdong Province (A2019228), Research Program of PLA (No. CGZ16C004), President Foundation of Zhujiang Hospital, Southern Medical University (No. yzjj2018rc09), and Scientific Research Foundation of Southern Medical University (Nos. C1051353 and PY2018N060).

Return