Journal Home > Volume 13 , Issue 8

Lithium sulfur (Li-S) batteries with high specific capacity and energy density can bring enormous opportunities for the next-generation energy storage systems. However, the severe dissolution and shuttle effect of lithium polysulfides (LiPSs) is still the key issue that seriously impedes the development of practical Li-S batteries. Here, polar Co9S8 inlaid carbon nanoboxes (Co9S8@C NBs) have been investigated as cathode host for high-performance Li-S batteries. In this integrated structure, Co9S8 nanocrystals not only provide strong chemisorptive capability for polar LiPSs, but also act as a catalyst to accelerate polysulfide redox reactions; while carbon nanobox with large inner space can offer enough space to relieve the volume expansion and physically confine LiPSs’ dissolution. As a result, the S/Co9S8@C NBs cathode exhibits high specific capacity at 1C and the capacity retention was ~ 83% after 400 cycles, corresponding to an average decay rate of only ~ 0.043% per cycle.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries

Show Author's information Weiwei Sun( )Yujie LiShuangke LiuQingpeng GuoYuhao ZhuXiaobin HongChunman Zheng( )Kai Xie
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

Lithium sulfur (Li-S) batteries with high specific capacity and energy density can bring enormous opportunities for the next-generation energy storage systems. However, the severe dissolution and shuttle effect of lithium polysulfides (LiPSs) is still the key issue that seriously impedes the development of practical Li-S batteries. Here, polar Co9S8 inlaid carbon nanoboxes (Co9S8@C NBs) have been investigated as cathode host for high-performance Li-S batteries. In this integrated structure, Co9S8 nanocrystals not only provide strong chemisorptive capability for polar LiPSs, but also act as a catalyst to accelerate polysulfide redox reactions; while carbon nanobox with large inner space can offer enough space to relieve the volume expansion and physically confine LiPSs’ dissolution. As a result, the S/Co9S8@C NBs cathode exhibits high specific capacity at 1C and the capacity retention was ~ 83% after 400 cycles, corresponding to an average decay rate of only ~ 0.043% per cycle.

Keywords: catalyst, Li-S batteries, shuttle effect, Co9S8@C, cathode host

References(43)

[1]
Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365-373.
[2]
Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086-2102.
[3]
Sun, W. W.; Li, Y. J.; Xie, K.; Luo, S. Q.; Bai, G. X.; Tan, X. J.; Zheng, C. M. Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries. Nano Energy 2018, 54, 175-183.
[4]
Zhang, H.; Zou, M. C.; Zhao, W. Q.; Wang, Y. S.; Chen, Y. J.; Wu, Y. Z.; Dai, L. X.; Cao, A. Y. Highly dispersed catalytic Co3S4 among a hierarchical carbon nanostructure for high-rate and long-life lithium-sulfur batteries. ACS Nano 2019, 13, 3982-3991.
[5]
Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2019, 12, 525-529.
[6]
He, J. R.; Chen, Y. F.; Manthiram, A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv. Energy Mater. 2019, 9, 1900584.
[7]
Li, G. R.; Chen, Z. W.; Lu, J. Lithium-sulfur batteries for commercial applications. Chem 2018, 4, 3-7.
[8]
Eftekhari, A.; Kim, D. W. Cathode materials for lithium-sulfur batteries: A practical perspective. J. Mater. Chem. A 2017, 5, 17734-17776.
[9]
Park, J.; Yu, S. H.; Sung, Y. E. Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today 2018, 18, 35-64.
[10]
Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361-386.
[11]
He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344-350.
[12]
Hua, W. X.; Yang, Z.; Nie, H. G.; Li, Z. Y.; Yang, J. Z.; Guo, Z. Q.; Ruan, C. P.; Chen, X. A.; Huang, S. M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano 2017, 11, 2209-2218.
[13]
Fan, Y.; Yang, Z.; Hua, W. X.; Liu, D.; Tao, T.; Rahman, M.; Lei, W. W.; Huang, S. M.; Chen, Y. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602380.
[14]
Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R. ;Chen, R. J.; Liu, Q. B.; Zhang, Q. A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107.
[15]
Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783-791.
[16]
Xiao, Z. B.; Yang, Z.; Zhang, L. J.; Pan, H.; Wang, R. H. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries. ACS Nano 2017, 11, 8488-8498.
[17]
He, J. R.; Chen, Y. F; Manthiram, A. MOF-derived cobalt sulfide grown on 3D graphene foam as an efficient sulfur host for long-life lithium-sulfur batteries. iScience 2018, 4, 36-43.
[18]
Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 23127-23168.
[19]
Li, Y. J.; Fan, J. M.; Zhang, J. H.; Yang, J. F.; Yuan, R. M.; Chang, J.; Zheng, M. S.; Dong, Q. F. A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries. ACS Nano 2017, 11, 11417-11424.
[20]
Xiao, Z. B.; Yang, Z.; Li, Z. L.; Li, P. Y.; Wang, R. H. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 2019, 13, 3404-3412.
[21]
He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Wang, Z. G.; Zhang, W. L. Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 18605-18610.
[22]
Wang, Y. Z.; Adekoya, D.; Sun, J. Q.; Tang, T. Y.; Qiu, H. L.; Xu, L.; Zhang, S. Q.; Hou, Y. L. Manipulation of edge-site Fe-N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li-S batteries. Adv. Funct. Mater. 2019, 29, 1807485.
[23]
Pan, Z. Z.; Lv, W.; He, Y. B.; Zhao, Y.; Zhou, G. M.; Dong, L. B.; Niu, S. Z.; Zhang, C.; Lyu, R. Y.; Wang, C. et al. A nacre-like carbon nanotube sheet for high performance Li-polysulfide batteries with high sulfur loading. Adv. Sci. 2018, 5, 1800384.
[24]
He, J. R.; Manthiram, A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv. Energy Mater. 2020, 10, 1903241.
[25]
Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.
[26]
Shen, Z. H.; Cao, M. Q.; Zhang, Z. L.; Pu, J.; Zhong, C. L.; Li, J. C.; Ma, H. X.; Li, F. J.; Zhu, J.; Pan, F. et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 2020, 30, 1906661.
[27]
Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031-6039.
[28]
Zhang, S. S.; Tran, D. T. Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries. J. Mater. Chem. A 2016, 4, 4371-4374.
[29]
He, J. R.; Luo, L.; Chen, Y. F.; Manthiram, A. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1702707.
[30]
Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496-1504.
[31]
Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239-248.
[32]
Zhang, H. Y.; Cui, H. T.; Li, J.; Liu, Y. Y.; Yang, Y. Z.; Wang, M. R. Frogspawn inspired hollow Fe3C@N-C as an efficient sulfur host for high-rate lithium-sulfur batteries. Nanoscale 2019, 11, 21532-21541.
[33]
He, J. R.; Chen, Y. F.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ. Sci. 2018, 11, 2560-2568.
[34]
Liu, X.; He, Q.; Yuan, H.; Yan, C.; Zhao, Y.; Xu, X.; Huang, J. Q.; Chueh, Y. L.; Zhang, Q.; Mai, L. Q. Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium-sulfur batteries. J. Energy Chem. 2020, 48, 109-115.
[35]
Zhao, S. Y.; Tian, X. H.; Zhou, Y. K.; Ma, B.; Natarajan, A. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium-sulfur batteries. J. Energy Chem. 2020, 46, 22-29.
[36]
Sun, W. W.; Liu, C.; Li, Y. J.; Luo, S. Q.; Liu, S. K.; Hong, X. B.; Xie, K.; Liu, Y. M.; Tan, X. J.; Zheng, C. M. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries. ACS Nano 2019, 13, 12137-12147.
[37]
Yu, X. Y.; Yu, L.; Shen, L. F.; Song, X. H.; Chen, H. Y.; Lou, X. W. General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 2014, 24, 7440-7446.
[38]
Lai, Y. C.; Nie, H. G.; Xu, X. J.; Fang, G. Y.; Ding, X. W.; Chan, D.; Zhou, S. Y.; Zhang, Y. G.; Chen, X. A.; Yang, Z. Interfacial molecule mediators in cathodes for advanced Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 29978-29984.
[39]
Luo, F.; Ma, D. T.; Li, Y. L.; Mi, H. W.; Zhang, P. X.; Luo, S. Hollow Co3S4/C anchored on nitrogen-doped carbon nanofibers as a free-standing anode for high-performance Li-ion batteries. Electrochim. Acta 2019, 299, 173-181.
[40]
Zhang, Y. G.; Wang, Y. G.; Luo, R. J.; Yang, Y.; Lu, Y.; Guo, Y.; Liu, X. M.; Cao, S. X.; Kim, J. K.; Luo, Y. S. A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries. Nanoscale Horiz. 2020, 5, 530-540.
[41]
Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977-3985.
[42]
Dai, C. L.; Lim, J. M.; Wang, M. Q.; Hu, L. Y.; Chen, Y. M.; Chen, Z. Y.; Chen, H.; Bao, S. J.; Shen, B. L.; Li, Y. et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704443.
[43]
Xu, J.; Zhang, W. X.; Fan, H. B.; Cheng, F. L.; Su, D. W.; Wang, G. X. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73-82.
File
12274_2020_2821_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2020
Revised: 18 April 2020
Accepted: 19 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge the financial support from the National Postdoctoral Program for Innovation Talents (No. BX201700103), and China Postdoctoral Science Foundation funded project (No. 2018M633664).

Return