AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting

Yutai Wu1Hui Wang1Shan Ji2( )Bruno G. Pollet3Xuyun Wang1Rongfang Wang1( )
State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
Show Author Information

Graphical Abstract

Abstract

Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process. Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening. A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability. At 10 mA·cm-2, a Ni2P cell voltage of 1.63 V was obtained, which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell. The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.

Electronic Supplementary Material

Download File(s)
12274_2020_2816_MOESM1_ESM.pdf (3.4 MB)

References

[1]
Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077-7084.
[2]
Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.
[3]
Cheng, N. Y.; Liu, Q.; Tian, J. Q.; Sun, X. P.; He, Y. Q.; Zhai, S. Y.; Asiri, A. M. Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. Int. J. Hydrogen Energy 2015, 40, 9866-9871.
[4]
Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.
[5]
Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610-614.
[6]
Zheng, H. Y.; Huang, X. B.; Wu, Z. Y.; Gao, H. Y.; Dong, W. J.; Wang, G. Controlled synthesis of 3D flower-like Ni2P composed of mesoporous nanoplates for overall water splitting. Chem. -Asian J. 2017, 12, 2956-2961.
[7]
Liu, T.; Li, A. R.; Wang, C. B.; Zhou, W.; Liu, S. J.; Guo, L. Interfacial electron transfer of Ni2P-NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 2018, 30, 1803590.
[8]
Zhang, Y. X.; Sun, L.; Bai, L. Q.; Si, H. C.; Zhang, Y.; Zhang, Y. H. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res. 2019, 12, 607-618.
[9]
Yan, Q.; Wei, T.; Wu, J.; Yang, X. Y.; Zhu, M.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X. et al. Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting. ACS Sustainable Chem. Eng. 2018, 6, 9640-9648.
[10]
Li, Y. J.; Zhang, H. C.; Jiang, M.; Zhang, Q.; He, P. L.; Sun, X. M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1702513.
[11]
Xiao, X.; Huang, D. K.; Fu, Y. Q.; Wen, M.; Jiang, X. X.; Lv, X. W.; Li, M.; Gao, L.; Liu, S. S.; Wang, M. K. et al. Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2018, 10, 4689-4696.
[12]
Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y. R.; Zheng, X. S.; Zhu, J. F.; Gao, M. R.; Yu, S. H. A Janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem., Int. Ed. 2018, 57, 15445-15449.
[13]
Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375-380.
[14]
Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251-2259.
[15]
Liu, S.; Hu, C.; Lv, C.; Cai, J. G.; Duan, M.; Luo, J. H.; Song, J. F.; Shi, Y.; Chen, C. A.; Luo, D. L. et al. Facile preparation of large-area self-supported porous nickel phosphide nanosheets for efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 17974-17984.
[16]
Yan, Y.; Thia, L.; Xia, B. Y.; Ge, X. M.; Liu, Z. L.; Fisher, A.; Wang, X. Construction of efficient 3D gas evolution electrocatalyst for hydrogen evolution: Porous FeP nanowire arrays on graphene sheets. Adv. Sci. 2015, 2, 1500120.
[17]
Wang, X. N.; Tong, R.; Wang, Y.; Tao, H. L.; Zhang, Z. H.; Wang, H. Surface roughening of nickel cobalt phosphide nanowire arrays/Ni foam for enhanced hydrogen evolution activity. ACS Appl. Mater. Interfaces 2016, 8, 34270-34279.
[18]
Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883-1894.
[19]
Ye, W.; Fang, X. Y.; Chen, X. B.; Yan, D. P. A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale 2018, 10, 19484-19491.
[20]
Ye, W.; Yang, Y. S.; Fang, X. Y.; Arif, M.; Chen, X. B.; Yan, D. P. 2D cocrystallized metal-organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. ACS Sustainable Chem. Eng. 2019, 7, 18085-18092.
[21]
Shi, X.; Wang, H.; Kannan, P.; Ding, J. T.; Ji, S.; Liu, F. S.; Gai, H. J.; Wang, R. F. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J. Mater. Chem. A 2019, 7, 3344-3352.
[22]
Ma, Z. P.; Shao, G. J.; Fan, Y. Q.; Wang, G. L.; Song, J. J.; Shen, D. J. Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 9050-9058.
[23]
Liu, Q. B.; Ji, S.; Yang, J.; Wang, H.; Pollet, B. G.; Wang, R. F. Enhanced cycleability of amorphous MnO2 by covering on α-MnO2 needles in an electrochemical capacitor. Materials 2017, 10, 988.
[24]
Liu, Q. B.; Yang, J.; Wang, R. F.; Wang, H.; Ji, S. Manganese dioxide core-shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications. RSC Adv. 2017, 7, 33635-33641.
[25]
Zhu, Y. L.; Zong, Q.; Zhang, Q. L.; Yang, H.; Wang, Q. Q.; Wang, H. Y. Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. Electrochim. Acta 2019, 299, 441-450.
[26]
Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520-531.
[27]
Chen, F. S.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. F. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem. Eng. J. 2018, 345, 48-57.
[28]
Wu, H.; Lu, X.; Zheng, G. F.; Ho, G. W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy. Mater. 2018, 8, 1702704.
[29]
Ma, Y. J.; Wang, R. F.; Wang, H.; Linkov, V.; Ji, S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Phys. Chem. Chem. Phys. 2014, 16, 3593-3602.
[30]
Shi, J. W.; Zou, Y. J.; Cheng, L. H.; Ma, D. D.; Sun, D. K.; Mao, S. M.; Sun, L. W.; He, C.; Wang, Z. Y. In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production. Chem. Eng. J. 2019, 378, 122161.
[31]
Cho, J. S.; Won, J. M.; Lee, J. H.; Kang, Y. C. Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the Kirkendall effect and Ostwald ripening. Nanoscale 2015, 7, 19620-19626.
[32]
He, N.; He, Z. D.; Liu, L.; Lu, Y.; Wang, F. Q.; Wu, W. H.; Tong, G. X. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 2020, 381, 122743.
[33]
Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682.
[34]
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.
[35]
Wang, M. C.; Ding, R. M.; Cui, X. M.; Qin, L.; Wang, J.; Wu, G. P.; Wang, L. C.; Lv, B. L. CoP porous hexagonal nanoplates in situ grown on RGO as active and durable electrocatalyst for hydrogen evolution. Electrochim. Acta 2018, 284, 534-541.
[36]
Bose, R.; Jothi, V. R.; Velusamy, D. B; Arunkumar, P.; Yi, S. C. A highly effective, stable oxygen evolution catalyst derived from transition metal selenides and phosphides. Part. Part. Syst. Char. 2018, 35, 1800135.
[37]
Dutta, A.; Samantara, A. K.; Dutta, S. K.; Jena, B. K.; Pradhan, N. Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient OER catalyst. ACS Energy Lett. 2016, 1, 169-174.
[38]
Xu, P. M.; Qiu, L. J.; Wei, L. C.; Liu, Y. Y.; Yuan, D. S.; Wang, Y.; Tsiakaras, P. Efficient overall water splitting over Mn doped Ni2P microflowers grown on nickel foam. Catal. Today, in press, .
[39]
You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 2016, 6, 714-721.
[40]
Tao, L.; Wang, Y. Q.; Zou, Y. Q.; Zhang, N. N.; Zhang, Y. Q.; Wu, Y. J.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Charge transfer modulated activity of carbon-based electrocatalysts. Adv. Energy Mater. 2020, 10, 1901227.
[41]
Wang, H.; Liu, Z. Y.; Ma, Y. J.; Julian, K.; Ji, S.; Linkov, V.; Wang, R. F. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Phys. Chem. Chem. Phys. 2013, 15, 13999-14005.
Nano Research
Pages 2098-2105
Cite this article:
Wu Y, Wang H, Ji S, et al. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Research, 2020, 13(8): 2098-2105. https://doi.org/10.1007/s12274-020-2816-7
Topics:

944

Views

101

Crossref

N/A

Web of Science

101

Scopus

6

CSCD

Altmetrics

Received: 17 December 2019
Revised: 13 April 2020
Accepted: 18 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return