Journal Home > Volume 13 , Issue 8

Palladium diselenide (PdSe2), a stable layered material with pentagonal structure, has attracted extensive interest due to its excellent electrical and optoelectronic performance. Here, we report a reliable process to synthesize PdSe2 via chemical vapor deposition (CVD) method. Through systematic regulation of temperature in the growth process, we can tune the thickness, size, nucleation density and morphology of PdSe2 nanosheets. Field-effect transistors based on PdSe2 nanosheets exhibit n-type behavior and present a high electron mobility of 105 cm2·V-1·s-1. The electrical property of the devices after 6 months keeping in the air show little change, implying outstanding air-stability of PdSe2. In addition, PdSe2 near-infrared photodetector shows a photoresponsivity of 660 A·W-1 under 914 nm laser. These performances are better than those of most CVD-grown 2D materials, making ultrathin PdSe2 a highly qualified candidate material for next-generation optoelectronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors

Show Author's information Weiting Xu1,2Jiayang Jiang3Huifang Ma2Zhengwei Zhang2Jia Li2Bei Zhao2Ruixia Wu2Xiangdong Yang2Hongmei Zhang2Bailing Li2Weining Shu1,2Zucheng Zhang2Bo Li1,2( )Yuan Liu1Lei Liao3Xidong Duan2( )
Hunan Key Laboratory of Two-Dimensional Materials, Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Abstract

Palladium diselenide (PdSe2), a stable layered material with pentagonal structure, has attracted extensive interest due to its excellent electrical and optoelectronic performance. Here, we report a reliable process to synthesize PdSe2 via chemical vapor deposition (CVD) method. Through systematic regulation of temperature in the growth process, we can tune the thickness, size, nucleation density and morphology of PdSe2 nanosheets. Field-effect transistors based on PdSe2 nanosheets exhibit n-type behavior and present a high electron mobility of 105 cm2·V-1·s-1. The electrical property of the devices after 6 months keeping in the air show little change, implying outstanding air-stability of PdSe2. In addition, PdSe2 near-infrared photodetector shows a photoresponsivity of 660 A·W-1 under 914 nm laser. These performances are better than those of most CVD-grown 2D materials, making ultrathin PdSe2 a highly qualified candidate material for next-generation optoelectronic applications.

Keywords: two-dimensional (2D) materials, chemical vapor deposition, electron mobility, infrared photodetector, PdSe2 nanosheets

References(63)

[1]
Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093-14099.
[2]
Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035-8041.
[3]
Zhou, S. S.; Wang, R. Y.; Han, J. B.; Wang, D. L.; Li, H. Q.; Gan, L.; Zhai, T. Y. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and Raman scattering investigation. Adv. Funct. Mater. 2019, 29, 1805880.
[4]
Cui, Y.; Zhou, Z.; Li, T.; Wang, K.; Li, J.; Wei, Z. Versatile crystal structures and (opto)electronic applications of the 2D metal mono-, di-, and tri-chalcogenide nanosheets. Adv. Funct. Mater. 2019, 29, 1900040.
[5]
Zhang, Z. P.; Gong, Y.; Zou, X. L.; Liu, P. R.; Yang, P. F.; Shi, J. P.; Zhao, L. Y.; Zhang, Q.; Gu, L.; Zhang, Y. F. Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano 2019, 13, 885-893.
[6]
Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.
[7]
Tang, L. P.; Tang, L. M.; Wang, D.; Deng, H. X.; Chen, K. Q. Metal and ligand effects on the stability and electronic properties of crystalline two-dimensional metal-benzenehexathiolate coordination compounds. J. Phys.: Condens. Matter 2018, 30, 465301.
[8]
Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076-4082.
[9]
Sun, G. Z.; Li, B.; Li, J.; Zhang, Z. W.; Ma, H. F.; Chen, P.; Zhao, B.; Wu, R. X.; Dang, W. Q.; Yang, X. D. et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res. 2019, 12, 1139-1145.
[10]
Sun, G. Z.; Li, B.; Wang, S. F.; Zhang, Z. W.; Li, J.; Duan, X. D.; Duan, X. F. Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano Res. 2019, 12, 2781-2787.
[11]
Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
[12]
Lee, S.; Yang, F.; Suh, J.; Yang, S. J.; Lee, Y.; Li, G.; Sung Choe, H.; Suslu, A.; Chen, Y. B.; Ko, C. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 2015, 6, 8573.
[13]
Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.
[14]
Zhong, M.; Xia, Q.; Pan, L.; Liu, Y.; Chen, Y.; Deng, H. X.; Li, J.; Wei, Z. Field-effect transistors: Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic (Adv. Funct. Mater. 43/2018). Adv. Funct. Mater. 2018, 28, 1870312.
[15]
Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Heine, T. Room temperature quantum spin hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. NPG Asia Mater. 2016, 8, e264.
[16]
Wang, F. Q.; Yu, J. B.; Wang, Q.; Kawazoe, Y.; Jena, P. Lattice thermal conductivity of penta-graphene. Carbon 2016, 105, 424-429.
[17]
Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511-2519.
[18]
Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090-14097.
[19]
Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019, 141, 8928-8936.
[20]
Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172-1182.
[21]
Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.
[22]
Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.
[23]
Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907-9917.
[24]
Hoffman, A. N.; Gu, Y. Y.; Tokash, J.; Woodward, J.; Xiao, K.; Rack, P. D. Layer-by-layer thinning of PdSe2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces 2020, 12, 7345-7350.
[25]
Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.
[26]
Gu, Y. Y.; Cai, H.; Dong, J. C.; Yu, Y. L.; Hoffman, A. N.; Liu, C. Z.; Oyedele, A. D.; Lin, Y. C.; Ge, Z. Z.; Puretzky, A. A. et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater., in press, .
[27]
Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.
[28]
Zhao, B.; Dang, W. W.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 2018, 140, 14217-14223.
[29]
Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930-935.
[30]
Shao, G. L.; Xue, X. X.; Zhou, X. L.; Xu, J.; Jin, Y. Y.; Qi, S. Y.; Liu, N.; Duan, H. G.; Wang, S. S.; Li, S. S. et al. Shape-engineered synthesis of atomically thin 1T-SnS2 catalyzed by potassium halides. ACS Nano 2019, 13, 8265-8274.
[31]
Li, X. F.; Dong, J. C.; Idrobo, J. C.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K. Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc. 2017, 139, 482-491.
[32]
Li, X. F.; Basile, L.; Huang, B.; Ma, C.; Lee, J.; Vlassiouk, I. V.; Puretzky, A. A.; Lin, M. W.; Yoon, M.; Chi, M. F. et al. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS Nano 2015, 9, 8078-8088.
[33]
Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.
[34]
Chow, W. L.; Yu, P.; Liu, F. C.; Hong, J. H.; Wang, X. L.; Zeng, Q. S.; Hsu, C. H.; Zhu, C.; Zhou, J. D.; Wang, X. W. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017, 29, 1602969.
[35]
Puretzky, A. A.; Oyedele, A. D.; Xiao, K.; Haglund, A. V.; Sumpter, B. G.; Mandrus, D.; Geohegan, D. B.; Liang, L. B. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018, 5, 035016.
[36]
Bagnall, A. G.; Liang, W. Y.; Marseglia, E. A.; Welber, B. Raman studies of MoS2 at high pressure. Phys. B+C 1980, 99, 343-346.
[37]
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
[38]
Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T. Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett. 2012, 101, 101906.
[39]
Burton, W. K.; Cabrera, N. Crystal growth and surface structure. Part I. Discuss. Faraday Soc. 1949, 5, 33-39.
[40]
Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119-6127.
[41]
Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709-713.
[42]
Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao, K. K.; Lin, Z. Y.; Zhao, B. et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 2018, 18, 3523-3529.
[43]
Ma, H. F.; Dang, W. Q.; Yang, X. D.; Li, B.; Zhang, Z. W.; Chen, P.; Liu, Y.; Wan, Z.; Qian, Q.; Luo, J. et al. Chemical vapor deposition growth of single crystalline CoTe2 nanosheets with tunable thickness and electronic properties. Chem. Mater. 2018, 30, 8891-8896.
[44]
Wu, R. X.; Tao, Q. Y.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z. W.; Ma, H. F.; Sun, G. Z. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 2019, 29, 1806611.
[45]
Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371-6379.
[46]
Xie, S.; Xu, M. S.; Liang, T.; Huang, G. W.; Wang, S. P.; Xue, G. B.; Meng, N.; Xu, Y.; Chen, H. Z.; Ma, X. Y. et al. A high-quality round-shaped monolayer MoS2 domain and its transformation. Nanoscale 2016, 8, 219-225.
[47]
van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.
[48]
Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.
[49]
Chen, L.; Liu, B. L.; Ge, M. Y.; Ma, Y. Q.; Abbas, A. N.; Zhou, C. W. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 2015, 9, 8368-8375.
[50]
Zheng, Z.; Hu, Q. S.; Zhou, H. Z.; Luo, P.; Nie, A. M.; Zhu, H. M.; Gan, L.; Zhuge, F. W.; Ma, Y.; Song, H. S. et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz. 2019, 4, 1372-1379.
[51]
Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725-10731.
[52]
Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 2019, 13, 9028-9037.
[53]
Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.
[54]
Guo, N.; Gong, F.; Liu, J. K.; Jia, Y.; Zhao, S. F.; Liao, L.; Su, M.; Fan, Z. Y.; Chen, X. S.; Lu, W. et al. Hybrid WSe2-In2O3 phototransistor with ultrahigh detectivity by efficient suppression of dark currents. ACS Appl. Mater. Interfaces 2017, 9, 34489-34496.
[55]
Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691-3718.
[56]
Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.
[57]
Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296-8301.
[58]
Li, Q.; Wei, A. X.; Lu, J. T.; Tao, L. L.; Yang, Y. B.; Luo, D. X.; Liu, J.; Xiao, Y.; Zhao, Y.; Li, J. B. Synthesis of submillimeter-scale single crystal stannous sulfide nanoplates for visible and near-infrared photodetectors with ultrahigh responsivity. Adv. Electron. Mater. 2018, 4, 1800154.
[59]
Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.
[60]
Wang, F. K.; Li, L. G.; Huang, W. J.; Li, L.; Jin, B.; Li, H. Q.; Zhai, T. Y. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater. 2018, 28, 1802707.
[61]
Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253-7263.
[62]
Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.
[63]
Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886-1894.
File
12274_2020_2815_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 February 2020
Revised: 15 April 2020
Accepted: 17 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We acknowledge the support from National Natural Science Foundation of China (Nos. 61804050, 51991340, 51991343, and 51872086), the Fundamental Research Funds of the Central Universities (Nos. 531107051078 and 531107051055), the Double First-Class Initiative of Hunan University (No. 531109100004), the Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010), and the Strategic Priority Research Program of Chinese Academy of Science, Grant (No. XDB30000000).

Return