AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphitic nanorings for super-long lifespan lithium-ion capacitors

Guangchao Li1Zhoulan Yin1Yuqing Dai1Bianzheng You1Huajun Guo1Zhixing Wang1Guochun Yan1Yong Liu2Jiexi Wang1,2( )
School of Metallurgy and Environment & College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

Porous graphitic carbon nanorings (PGCNs) are proposed by smart catalytic graphitization of nano-sized graphene quantum dots (GQDs). The as-prepared PGCNs show unique ring-like morphology with diameter around 10 nm, and demonstrate extraordinary mesoporous structure, controllable graphitization degree and highly defective nature. The mechanism from GQDs to PGCNs is proven to be a dissolution-precipitation process, undergoing the procedure of amorphous carbon, intermediate phase, graphitic carbon nanorings and graphitic carbon nanosheets. Further, the relationship between particles size of GQDs precursor and graphitization degree of PGCNs products is revealed. The unique microstructure implies PGCNs a broad prospect for energy storage application. When applied as negative electrode materials in dual-carbon lithium-ion capacitors, high energy density (77.6 Wh·kg-1) and super long lifespan (89.5% retention after 40,000 cycles at 5.0 A·g-1) are obtained. The energy density still maintains at 24.5 Wh·kg-1 even at the power density of 14.1 kW·kg-1, demonstrating excellent rate capability. The distinct microstructure of PGCNs together with the strategy for catalytic conversion from nanocarbon precursors to carbon nanorings opens a new window for carbon materials in electrochemical energy storage.

Electronic Supplementary Material

Download File(s)
12274_2020_2811_MOESM1_ESM.pdf (6.1 MB)

References

[1]
Zou, L. L.; Kitta, M.; Hong, J. H.; Suenaga, K.; Tsumori, N.; Liu, Z.; Xu, Q. Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 2019, 31, 1900440.
[2]
Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. G. Graphite anode for a potassium-Ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[3]
Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M.; Fang, Z. B.; Wang, C. Z.; Wei, Y. J.; Chen, G.; Zhang, D.; Sun, Z. H. et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries. Nano Energy 2018, 49, 137-146.
[4]
Zheng, J. S.; Qin, N.; Jin, L. M.; Guo, X.; Shen, C.; Wu, Q.; Zheng, J. P. Constructing an unbalanced structure toward high working voltage for improving energy density of non-aqueous carbon-based electrochemical capacitors. Chin. Chem. Lett. 2020, 31, 903-908.
[5]
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater., .
[6]
Park, S. K.; Kwon, S. H.; Lee, S. G.; Choi, M. S.; Suh, D. H.; Nakhanivej, P.; Lee, H.; Park, H. S. 105 cyclable pseudocapacitive Na-Ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett. 2018, 3, 724-732.
[7]
Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093.
[8]
Liu, S. N.; Zhao, T. Q.; Tan, X. H.; Guo, L. M.; Wu, J. X.; Kang, X. H.; Wang, H. F.; Sun, L. F.; Chu, W. G. 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries. Nano Energy 2019, 63, 103894.
[9]
Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018, 30, 1704449.
[10]
Yao, L.; Wu, Q.; Zhang, P. X.; Zhang, J. M.; Wang, D. R.; Li, Y. L.; Ren, X. Z.; Mi, H. W.; Deng, L. B.; Zheng, Z. J. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 2018, 30, 1706054.
[11]
Jin, L. M.; Guo, X.; Gong, R. Q.; Zheng, J. S.; Xiang, Z. H.; Zhang, C. M.; Zheng, J. P. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors. Energy Storage Mater. 2019, 23, 409-417.
[12]
Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620-1636.
[13]
Li, X. M.; Rui, M. C.; Song, J. Z.; Shen, Z. H.; Zeng H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929-4947.
[14]
Zhu, Z. J.; Zhai, Y. L.; Li, Z. H.; Zhu, P. Y.; Mao, S.; Zhu, C. Z.; Du, D.; Belfiore, L. A.; Tang, J. G.; Lin, Y. H. Red carbon dots: Optical property regulations and applications. Mater. Today 2019, 30, 52-79.
[15]
Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.
[16]
Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861-7866.
[17]
Ge, P.; Li, S. J.; Xu, L. Q.; Zou, K. Y.; Gao, X.; Cao, X. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Hierarchical hollow-microsphere metal- selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 2019, 9, 1803035.
[18]
Shi, Z. J.; Chu, W. J.; Hou, Y. D.; Gao, Y. F.; Yang, N. J. Asymmetric supercapacitors with high energy densities. Nanoscale 2019, 11, 11946-11955.
[19]
Byeon, A.; Glushenkov, A. M.; Anasori, B.; Urbankowski, P.; Li, J. W.; Byles, B. W.; Blake, B.; Van Aken, K. L.; Kota, S.; Pomerantseva, E. et al. Lithium-ion capacitors with 2D Nb2CTx (MXene) - carbon nanotube electrodes. J. Power Sources 2016, 326, 686-694.
[20]
Jin, L. M.; Guo, X.; Shen, C.; Qin, N.; Zheng, J. S.; Wu, Q.; Zhang, C. M.; Zheng, J. P. A universal matching approach for high power- density and high cycling-stability lithium ion capacitor. J. Power Sources 2019, 441, 227211.
[21]
Wang, P.; Zhang, G.; Li, M. Y.; Yin, Y. X.; Li, J. Y.; Li, G.; Wang, W. P.; Peng, W.; Cao, F. F.; Guo, Y. G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020.
[22]
Abbas, S. A.; Forghani, M.; Anh, S.; Donne, S. W.; Jung, K. D. Carbon hollow spheres as electrochemical capacitors: Mechanistic insights. Energy Storage Mater. 2020, 24, 550-556.
[23]
Li, Z.; Cao, L. J.; Chen, W.; Huang, Z. C.; Liu, H. Mesh-like carbon nanosheets with high-level nitrogen doping for high-energy dual- carbon lithium-ion capacitors. Small 2019, 15, 1805173.
[24]
Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 2017, 29, 1702093.
[25]
Dong, S. Y.; Li, H. S.; Wang, J. J.; Zhang, X. G.; Ji, X. L. Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017, 10, 4448-4456.
[26]
Jin, L. M.; Gong, R. Q.; Zhang, W. C.; Xiang, Y.; Zheng, J. S.; Xiang, Z. H.; Zhang, C. M.; Xia, Y. Y.; Zheng, J. P. Toward high energy-density and long cycling-lifespan lithium ion capacitors: A 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode. J. Mater. Chem. A 2019, 7, 8234-8244.
[27]
Jagadale, A.; Zhou, X.; Xiong, R.; Dubal, D. P.; Xu, J.; Yang, S. Lithium ion capacitors (LICs): Development of the materials. Energy Storage Mater. 2019, 19, 314-329.
[28]
Li, G. C.; Yang, Z. W.; Yin, Z. L.; Guo, H. J.; Wang, Z. X.; Yan, G. C.; Liu, Y.; Li, L. J.; Wang, J. X. Non-aqueous dual-carbon lithium-ion capacitors: A review. J. Mater. Chem. A 2019, 7, 15541-15563.
[29]
Yu, X. L.; Zhan, C. Z.; Lv, R. T.; Bai, Y.; Lin, Y. X.; Huang, Z. H.; Shen, W. C.; Qiu, X. P.; Kang, F. Y. Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 2015, 15, 43-53.
[30]
Liu, C. F.; Zhang, C. K.; Song, H. Q.; Zhang, C. P.; Liu, Y. G.; Nan, X. H.; Cao, G. Z. Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 2016, 22, 290-300.
[31]
Yang, Z. W.; Guo, H. J.; Li, X. H.; Wang, Z. X.; Wang, J. X.; Wang, Y. S.; Yan, Z. L.; Zhang, D. C. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors. J. Mater. Chem. A 2017, 5, 15302-15309.
[32]
Sivakkumar, S. R.; Milev, A. S.; Pandolfo, A. G. Effect of ball- milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. Electrochim. Acta 2011, 56, 9700-9706.
[33]
Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.
[34]
Li, G. C.; Yin, Z. L.; Guo, H. J.; Wang, Z. X.; Yan, G. C.; Yang, Z. W.; Liu, Y.; Ji, X. B.; Wang J. X. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium- ion hybrid supercapacitor. Adv. Energy Mater. 2019, 9, 1802878.
[35]
Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.
[36]
Tan, J.; Chen, H. B.; Gao, Y.; Li, H. M. Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance. Electrochim. Acta 2015, 178, 144-152.
[37]
Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L. G.; Li, D.; Tan, H. Q.; Zhao, Z.; Xie, Z. G.; Sun, Z. C. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272-12277.
[38]
Liu, Z. Z.; Gong, Y.; Fan, Z. F. A dopamine-modulated nitrogen-doped graphene quantum dot fluorescence sensor for the detection of glutathione in biological samples. New J. Chem. 2016, 40, 8911-8917.
[39]
Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.
[40]
Wei, G. J.; Su, W.; Wei, Z. F.; Jing, M. H.; Fan, X. Z.; Liu, J. G.; Yan, C. W. Effect of the graphitization degree for electrospun carbon nanofibers on their electrochemical activity towards VO2+/VO2+ redox couple. Electrochim. Acta 2016, 199, 147-153.
[41]
Song, J. J.; Sun, B.; Liu, H.; Ma, Z. P.; Chen, Z. H.; Shao, G. J.; Wang, G. X. Enhancement of the rate capability of LiFePO4 by a new highly graphitic carbon-coating method. ACS Appl. Mater. Interfaces 2016, 8, 15225-15231.
[42]
Chen, M.; Yu, C.; Liu, S. H.; Fan, X. M.; Zhao, C. T.; Zhang, X.; Qiu, J. S. Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale 2015, 7, 1791-1795.
[43]
Zhou, X. Y.; Chen, F.; Bai, T.; Long, B.; Liao, Q. C.; Ren, Y. P.; Yang, J. Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem. 2016, 18, 2078-2088.
[44]
Zhu, J. B.; Xu, Y. L.; Zhang, Y.; Feng, T. Y.; Wang, J.; Mao, S. C.; Xiong, L. L. Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon 2016, 107, 638-645.
[45]
Park, S. K.; Lee, H.; Choi, M. S.; Suh, D. H.; Nakhanivej, P.; Park, H. S. Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage. Energy Storage Mater. 2018, 12, 331-340.
[46]
Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.
[47]
Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048-3058.
Nano Research
Pages 2909-2916
Cite this article:
Li G, Yin Z, Dai Y, et al. Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Research, 2020, 13(11): 2909-2916. https://doi.org/10.1007/s12274-020-2811-z
Topics:

844

Views

14

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 26 February 2020
Revised: 01 April 2020
Accepted: 14 April 2020
Published: 19 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return