Journal Home > Volume 13 , Issue 8

Facile design of economic-effective hydrogen evolution reaction (HER) catalysts with non-noble materials are promising for the production of renewable chemical fuels. Two-dimensional (2D) ultrathin transition metal dichalcogenides (TMDs) materials with large specific surface area and abundant catalytic active sites can significantly enhance their catalytic activities. Herein, we design and synthesize an atomically thin Ni-Se-S based hybrid nanosheet (NiSe1.2S0.8) via a simple solvothermal method, the thickness of NiSe1.2S0.8 nanosheets is only about 1.1 nm. Benefiting from the ultrathin nanostructure and rich defects, the optimal NiSe1.2S0.8 exhibits good electrocatalytic activity with the overpotential of 144 mV at -10 mA·cm-2, a small Tafel slope of 59 mV·dec-1, and outstanding catalytic stability in acid electrolyte for HER. The theoretical results show that hybrid electrocatalyst by S incorporation possesses the optimal adsorption free energy of hydrogen (ΔGH*). This study provides a simple method to synthesize a high-performance multicomponent electrocatalysts with the ultrathin nanostructures and abundant defects.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts

Show Author's information Jianpeng Sun1Xiangting Hu2Zhaodi Huang1Tianxiang Huang3Xiaokang Wang1Hailing Guo3Fangna Dai1( )Daofeng Sun1( )
College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
The State Key Lab of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Facile design of economic-effective hydrogen evolution reaction (HER) catalysts with non-noble materials are promising for the production of renewable chemical fuels. Two-dimensional (2D) ultrathin transition metal dichalcogenides (TMDs) materials with large specific surface area and abundant catalytic active sites can significantly enhance their catalytic activities. Herein, we design and synthesize an atomically thin Ni-Se-S based hybrid nanosheet (NiSe1.2S0.8) via a simple solvothermal method, the thickness of NiSe1.2S0.8 nanosheets is only about 1.1 nm. Benefiting from the ultrathin nanostructure and rich defects, the optimal NiSe1.2S0.8 exhibits good electrocatalytic activity with the overpotential of 144 mV at -10 mA·cm-2, a small Tafel slope of 59 mV·dec-1, and outstanding catalytic stability in acid electrolyte for HER. The theoretical results show that hybrid electrocatalyst by S incorporation possesses the optimal adsorption free energy of hydrogen (ΔGH*). This study provides a simple method to synthesize a high-performance multicomponent electrocatalysts with the ultrathin nanostructures and abundant defects.

Keywords: electrocatalysts, hydrogen evolution reaction, atomically thin, defect-rich, Ni-Se-S

References(70)

[1]
Zhi, W. S.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 4998-5009.
[2]
Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.
[3]
Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wågberg, T.; Gracia-Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766-6776.
[4]
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[5]
Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.
[6]
Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897-4900.
[7]
Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu. S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069-8097.
[8]
Chen, B.; Sun, G. Z.; Wang, J.; Liu, G. G.; Tan, C. L.; Chen, Y.; Cheng, H. F.; Chen, J. Z.; Ma, Q. L.; Huang, L. et al. Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chem. Commun., in press, .
[9]
Wang, S. P.; Wang, J.; Zhu, M. L.; Bao, X. B.; Xiao, B. Y.; Su, D. F.; Li, H. R.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: A highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15753-15759.
[10]
Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 2014, 118, 21347-21356.
[11]
Sun, Y. Q.; Xu, K.; Wei, Z. X.; Li, H. L.; Zhang, T.; Li, X. Y.; Cai, W. P.; Ma, J. M.; Fan, H. J.; Li, Y. Strong electronic interaction in dual-cation-incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1802121.
[12]
Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[13]
Xia, Y. F.; Huang, J. W.; Wu, W. Q.; Zhang, Y. D.; Wang, H.; Zhu, J. T.; Yao, J. J.; Xu, L.; Sun, Y. H.; Zhang, L. et al. Sulfur-doped rhenium selenide vertical nanosheets: A high-performance electrocatalyst for hydrogen evolution. ChemCatChem 2018, 10, 4424-4430.
[14]
Wang, H.; Ouyang, L. Y.; Zou, G. F.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. J. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catal. 2018, 10, 9529-9536.
[15]
Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433-14437.
[16]
Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245-1251.
[17]
Hou, Y.; Qiu, M.; Nam, G.; Kim, M. G.; Zhang, T.; Liu, K. J.; Zhuang, X. D.; Cho, J.; Yuan, C.; Feng, X. L. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 2017, 17, 4202-4209.
[18]
Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213-2219.
[19]
Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854-12858.
[20]
Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375-380.
[21]
Wu, K. L.; Chen, Z.; Cheong, W. C.; Liu, S. J.; Zhu, W.; Cao, X.; Sun, K. A.; Lin, Y.; Zheng, L. R.; Yan, W. S. et al. Toward bifunctional overall water splitting electrocatalyst: General preparation of transition metal phosphide nanoparticles decorated N-doped porous carbon spheres. ACS Appl. Mater. Interfaces 2018, 10, 44201-44208.
[22]
Wang, Y. P.; Ma, B.; Chen, Y. T. Iron phosphides supported on three-dimensional iron foam as an efficient electrocatalyst for water splitting reactions. J. Mater. Sci. 2019, 54, 14872-14883.
[23]
Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. G.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285-5288.
[24]
Ma, B.; Yang, Z. C.; Yuan, Z. H.; Chen, Y. T. Effective surface roughening of three-dimensional copper foam via sulfurization treatment as a bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy 2019, 44, 1620-1626.
[25]
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086-16090.
[26]
Li, H.; Wu, J. T.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 4, 1067-1075.
[27]
Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 22, 3102-3108.
[28]
Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed. 2016, 55, 693-697.
[29]
Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294-20297.
[30]
Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 1603904.
[31]
Teng, Y.; Wang, X. D.; Liao, J. F.; Li, W. G.; Chen, H. Y.; Dong, Y. J.; Kuang, D. B. Atomically thin defect-rich Fe-Mn-O hybrid nanosheets as high efficient electrocatalyst for water oxidation. Adv. Funct. Mater. 2018, 28, 1802463.
[32]
Sun, J. P.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Wang, X.; Yu, P. Y.; Zong, C.; Dai, F. N.; Sun, D. F. Defect-rich porous CoS1.097/MoS2 hybrid microspheres as electrocatalysts for pH-universal hydrogen evolution. ACS Appl. Energy Mater. 2019, 2, 7504-7511.
[33]
Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie. Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.
[34]
Zhuo, J. Q.; Cabán-Acevedo, M.; Liang, H. F.; Samad, L.; Ding, Q.; Fu, Y. P.; Li, M. X.; Jin, S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal. 2015, 5, 6355-6361.
[35]
Ma, F. X.; Xu, C. Y.; Lyu, F.; Song, B.; Sun, S. C.; Li, Y. Y.; Lu, J.; Zhen, L. Construction of FeP hollow nanoparticles densely encapsulated in carbon nanosheet frameworks for efficient and durable electrocatalytic hydrogen production. Adv. Sci. 2019, 6, 1801490.
[36]
Li, Q.; Wang, D. W.; Han, C.; Ma, X.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A 2018, 6, 8233-8237.
[37]
Sommer, F.; Singh, R. N.; Mittemeijer, E. J. Interface thermodynamics of nano-sized crystalline, amorphous and liquid metallic systems. J. Alloy. Compd. 2009, 467, 142-153.
[38]
Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819-1827.
[39]
Wen, G. D.; Wang, B. L.; Wang, C. X.; Wang, J.; Tian, Z. J.; Schlogl, R.; Su, D. S. Hydrothermal carbon enriched with oxygenated groups from biomass glucose as an efficient carbocatalyst. Angew. Chem., Int. Ed. 2017, 56, 600-604.
[40]
Pu, Z. H.; Amiinu, I. S.; Wang, M.; Yang, Y. S.; Mu, S. C. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale 2016, 8, 8500-8504.
[41]
Yu, B.; Wang, X. Q.; Qi, F.; Zheng, B. J.; He, J. R.; Lin, J.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl. Mater. Interfaces 2017, 9, 7154-7159.
[42]
Zhai, L. L.; Mak, C. H.; Qian, J. S.; Lin, S. H.; Lau, S. P. Self-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochim. Acta 2019, 305, 37-46.
[43]
Wang, T. T.; Gao, D. Q.; Xiao, W.; Xi, P. X.; Xue, D. S.; Wang, J. Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Res. 2018, 11, 6051-6061.
[44]
Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.
[45]
Wang, K.; Zhou, C. J.; Xia, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(SxSe1-x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 2015, 18, 1-11.
[46]
Meng, H. J.; Zhang, W. J.; Ma, Z. Z.; Zhang, F.; Tang, B.; Li, J. P.; Wang, X. G. Self-supported ternary Ni-S-Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: Experimental investigation and DFT calculation. ACS Appl. Mater. Interfaces 2018, 10, 2430-2441.
[47]
Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364-4376.
[48]
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.
[49]
Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.
[50]
Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559-11564.
[51]
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26.
[52]
Lin, J. H.; Wang, H. H.; Cao, J.; He, F.; Feng, J. C.; Qi, J. L. Engineering Se vacancies to promote the intrinsic activities of P doped NiSe2 nanosheets for overall water splitting. J. Colloid Interface Sci. 2020, 571, 260-266.
[53]
Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Lia, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B Environ. 2020, 262, 118245.
[54]
Lv, X. S.; Wei, W.; Wang, H.; Huang, B. B.; Dai, Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: A computational study. Appl. Catal. B Environ. 2019, 255, 117743.
[55]
Zhang, J. F.; Wang, Y.; Cui, J. W.; Wu, J. J.; Shu, X.; Yu, C. P.; Bai, H. Z.; Zha, M. Y.; Qin, Y. Q.; Zheng, H. M. et al. In-situ synthesis of carbon-coated β-NiS nanocrystals for hydrogen evolution reaction in both acidic and alkaline solution. Int. J. Hydrogen Energy 2018, 43, 16061-16067.
[56]
Yan, J. Q.; Wu, H.; Li, P.; Chen, H.; Jiang, R. B.; Liu, S. Z. Fe(III) doped NiS2 nanosheet: A highly efficient and low-cost hydrogen evolution catalyst. J. Mater. Chem. A 2017, 5, 10173-10181.
[57]
Zhang, L.; Wang, T.; Sun, L.; Sun, Y. J.; Hu, T. W.; Xu, K. W.; Ma, F. Hydrothermal synthesis of 3D hierarchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 19752-19759.
[58]
Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179-6187.
[59]
Liu, C. H.; Wang, K.; Zheng, X. R.; Liu, X. C.; Liang, Q.; Chen, Z. D. Rational design of MoSe2-NiSe@carbon heteronanostructures for efficient electrocatalytic hydrogen evolution in both acidic and alkaline media. Carbon 2018, 139, 1-9.
[60]
Shah, S. A.; Shen, X. P.; Xie, M. H.; Zhu, G. X.; Ji, Z. Y.; Zhou, H. B.; Xu, K. Q.; Yue, X. Y.; Yuan, A. H.; Zhu, J. et al. Nickel@nitrogen-doped carbon@MoS2 nanosheets: An efficient electrocatalyst for hydrogen evolution reaction. Small 2019, 15, 1804545.
[61]
Yu, S. H.; Chen, W. Z.; Wang, H. Y.; Pan, H.; Chua, D. H. C. Highly stable tungsten disulfide supported on a self-standing nickel phosphide foam as a hybrid electrocatalyst for efficient electrolytic hydrogen evolution. Nano Energy 2019, 55, 193-202.
[62]
Zhou, H. Q.; Yu, F.; Huang, Y. F.; Sun, J. Y.; Zhu, Z.; Nielsen, R. J.; He, R.; Bao, J. M.; Goddard III, W. A.; Chen, S. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 2016, 7, 12765.
[63]
Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015, 5, 2213-2219.
[64]
Liang, K.; Yan, Y.; Guo, L. M.; Marcus, K.; Li, Z.; Zhou, L.; Li, Y. L.; Ye, R. Q.; Orlovskaya, N.; Sohn, Y. H. et al. Strained W(SexS1-x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett. 2017, 2, 1315-1320.
[65]
Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1-x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS nano 2014, 8, 8468-8476.
[66]
Liu, K. L.; Wang, F. M.; Xu, K.; Shifa, T. A.; Cheng, Z. Z.; Zhan, X. Y.; He, J. CoS2xSe2(1-x) nanowire array: An efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 2016, 8, 4699-4704.
[67]
Shifa, T. A.; Wang, F. M.; Liu, K. L.; Cheng, Z. Z.; Xu, K.; Wang, Z. X.; Zhan, X. Y.; Jiang, C.; He, J. Efficient catalysis of hydrogen evolution reaction from WS2(1-x)P2x nanoribbons. Small 2017, 13, 1603706.
[68]
Zou, M. L.; Chen, J. D.; Xiao, L. F.; Zhu, H.; Yang, T. T.; Zhang, M.; Du, M. L. WSe2 and W(SexS1-x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 18090-18097.
[69]
Hong, W. T.; Jian, C. Y.; Wang, G. X.; He, X.; Li, J.; Cai, Q.; Wen, Z. H.; Liu, W. Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 251, 213-219.
[70]
Song, B.; Li, K.; Yin, Y.; Wu, T.; Dang, L.; Cabán-Acevedo, M.; Han, J. C.; Gao, T. L.; Wang, X. J.; Zhang Z. H. et al. Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 2017, 7, 8549-8557.
File
12274_2020_2807_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 March 2020
Revised: 03 April 2020
Accepted: 12 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771191 and 21875285), Taishan Scholar Foundation (No. ts201511019), the Shandong Natural Science Fund (No. ZR2017QB012) and the Fundamental Research Funds for the Central Universities (No. 19CX05001A).

Return