Journal Home > Volume 13 , Issue 8

Exploring cost-effective catalysts with high catalytic performance and long-term stability has always been a general concern for environment protection and energy conversion. Here, Au nanoparticles (NPs) embedded CuOx-CeO2 core/shell nanospheres (Au@CuOx-CeO2 CSNs) have been successfully prepared through a versatile one-pot method at ambient conditions. The spontaneous auto-redox reaction between HAuCl4 and Ce(OH)3 in aqueous solution triggered the self-assembly growth of micro-/nanostructural Au@CuOx-CeO2 CSNs. Meanwhile, the CuOx clusters in Au@CuOx-CeO2 CSNs are capable of improving the anti-sintering ability of Au NPs and providing synergistic catalysis benefits. As a result, the confined Au NPs exhibited extraordinary thermal stability even at a harsh thermal condition up to 700 °C. In addition, before and after the severe calcination process, Au@CuOx-CeO2 CSNs can exhibit enhanced catalytic activity and excellent recyclability towards the hydrogenation of p-nitrophenol compared to previously reported nanocatalysts. The synergistic catalysis path between Au/CuOx/CeO2 triphasic interfaces was revealed by density functional theory (DFT) calculations. The CuOx clusters around the embedded Au NPs can provide moderate adsorption strength of p-nitrophenol, while the adjacent CeO2-supported Au NPs can facilitate the hydrogen dissociation to form H* species, which contributes to achieve the efficient reduction of p-nitrophenol. This study opens up new possibilities for developing high-efficient and sintering-resistant micro-/nanostructural nanocatalysts by exploiting multiphasic systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol

Show Author's information Ke Wu1,§Xin-Yu Wang1,§Ling-Ling Guo2Yue-Jiao Xu1Liang Zhou1Ze-Yu Lyu1Kang-Yu Liu1Rui Si2Ya-Wen Zhang1Ling-Dong Sun1( )Chun-Hua Yan1,3( )
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

§ Ke Wu and Xin-Yu Wang contributed equally to this work.

Abstract

Exploring cost-effective catalysts with high catalytic performance and long-term stability has always been a general concern for environment protection and energy conversion. Here, Au nanoparticles (NPs) embedded CuOx-CeO2 core/shell nanospheres (Au@CuOx-CeO2 CSNs) have been successfully prepared through a versatile one-pot method at ambient conditions. The spontaneous auto-redox reaction between HAuCl4 and Ce(OH)3 in aqueous solution triggered the self-assembly growth of micro-/nanostructural Au@CuOx-CeO2 CSNs. Meanwhile, the CuOx clusters in Au@CuOx-CeO2 CSNs are capable of improving the anti-sintering ability of Au NPs and providing synergistic catalysis benefits. As a result, the confined Au NPs exhibited extraordinary thermal stability even at a harsh thermal condition up to 700 °C. In addition, before and after the severe calcination process, Au@CuOx-CeO2 CSNs can exhibit enhanced catalytic activity and excellent recyclability towards the hydrogenation of p-nitrophenol compared to previously reported nanocatalysts. The synergistic catalysis path between Au/CuOx/CeO2 triphasic interfaces was revealed by density functional theory (DFT) calculations. The CuOx clusters around the embedded Au NPs can provide moderate adsorption strength of p-nitrophenol, while the adjacent CeO2-supported Au NPs can facilitate the hydrogen dissociation to form H* species, which contributes to achieve the efficient reduction of p-nitrophenol. This study opens up new possibilities for developing high-efficient and sintering-resistant micro-/nanostructural nanocatalysts by exploiting multiphasic systems.

Keywords: core/shell nanostructure, sinter-resistant catalysts, triphasic interfaces catalysis, p-nitrophenol reduction

References(72)

[1]
Zhang, J. M.; Chen, G. Z.; Chaker, M.; Rosei, F.; Ma, D. L. Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl. Catal. B: Environ. 2013, 132-133, 107-115.
[2]
Rogers, S. M.; Catlow, C. R. A.; Gianolio, D.; Wells, P. P.; Dimitratos, N. Supported metal nanoparticles with tailored catalytic properties through sol-immobilisation: Applications for the hydrogenation of nitrophenols. Faraday Discuss. 2018, 208, 443-454.
[3]
Wu, Y. H.; Li, C. Y.; Zhou, K. W.; Zhao, Y. H.; Wang, X. J. A new preparation strategy via an in situ catalytic process: CeO2@Ag/Ag2Ta4O11 catalyst for 4-nitrophenol reduction. CrystEngComm 2016, 18, 6513-6519.
[4]
Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ. Sci. 2012, 5, 8937-8941.
[5]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096-2126.
[6]
Dai, Y. Q.; Lu, P.; Cao, Z. M.; Campbell, C. T.; Xia, Y. N. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314-4331.
[7]
Bingwa, N.; Patala, R.; Noh, J. H.; Ndolomingo, M. J.; Tetyana, S.; Bewana, S.; Meijboom, R. Synergistic effects of gold-palladium nanoalloys and reducible supports on the catalytic reduction of 4-nitrophenol. Langmuir 2017, 33, 7086-7095.
[8]
Xu, P. F.; Yu, R. B.; Ren, H.; Zong, L. B.; Chen, J.; Xing, X. R. Hierarchical nanoscale multi-shell Au/CeO2 hollow spheres. Chem. Sci. 2014, 5, 4221-4226.
[9]
Ta, N.; Liu, J. Y.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585-20588.
[10]
Wu, K.; Sun, L. D.; Yan, C. H. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance. Adv. Energy Mater. 2016, 6, 1600501.
[11]
Vivier, L.; Duprez, D. Ceria-based solid catalysts for organic chemistry. ChemSusChem 2010, 3, 654-678.
[12]
Guo, L. W.; Du, P. P.; Fu, X. P.; Ma, C.; Zeng, J.; Si, R.; Huang, Y. Y.; Jia, C. J.; Zhang, Y. W.; Yan, C. H. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nat. Commun. 2016, 7, 13481.
[13]
Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998-4999.
[14]
Jia, H. L.; Zhu, X. M.; Jiang, R. B.; Wang, J. F. Aerosol-sprayed gold/ceria photocatalyst with superior plasmonic hot electron-enabled visible-light activity. ACS Appl. Mater. Interfaces 2017, 9, 2560-2571.
[15]
Jia, H. L.; Du, A. X.; Zhang, H.; Yang, J. H.; Jiang, R. B.; Wang, J. F.; Zhang, C. Y. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J. Am. Chem. Soc. 2019, 141, 5083-5086.
[16]
Li, J.; Song, S. Y.; Long, Y.; Wu, L. L.; Wang, X.; Xing, Y.; Jin, R. C.; Liu, X. G.; Zhang, H. J. Investigating the hybrid-structure-effect of CeO2-encapsulated Au nanostructures on the transfer coupling of nitrobenzene. Adv. Mater. 2018, 30, 1704416.
[17]
Li, J.; Song, S. Y.; Long, Y.; Yao, S.; Ge, X.; Wu, L. L.; Zhang, Y. B.; Wang, X.; Yang, X. G.; Zhang, H. J. A general one-pot strategy for the synthesis of Au@multi-oxide yolk@shell nanospheres with enhanced catalytic performance. Chem. Sci. 2018, 9, 7569-7574.
[18]
Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 2014, 8, 8152-8162.
[19]
Min, B. K.; Wallace, W. T.; Goodman, D. W. Synthesis of a sinter-resistant, mixed-oxide support for Au nanoclusters. J. Phys. Chem. B 2004, 108, 14609-14615.
[20]
Lu, P.; Campbell, C. T.; Xia, Y. N. A sinter-resistant catalytic system fabricated by maneuvering the selectivity of SiO2 deposition onto the TiO2 surface versus the Pt nanoparticle surface. Nano Lett. 2013, 13, 4957-4962.
[21]
Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012, 2, 2537-2546.
[22]
Wang, F.; Li, W.; Feng, X. L.; Liu, D. P.; Zhang, Y. Decoration of Pt on Cu/Co double-doped CeO2 nanospheres and their greatly enhanced catalytic activity. Chem. Sci. 2016, 7, 1867-1873.
[23]
Prucek, R.; Kvítek, L.; Panáček, A.; Vančurová, L.; Soukupová, J.; Jančík, D.; Zbořil, R. Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency. J. Mater. Chem. 2009, 19, 8463-8469.
[24]
Dai, Y. Q.; Lim, B.; Yang, Y.; Cobley, C. M.; Li, W. Y.; Cho, E. C.; Grayson, B.; Fanson, P. T.; Campbell, C. T.; Sun, Y. M. et al. A sinter-resistant catalytic system based on platinum nanoparticles supported on TiO2 nanofibers and covered by porous silica. Angew. Chem., Int. Ed. 2010, 49, 8165-8168.
[25]
Song, S. Y.; Wang, X.; Zhang, H. J. CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application. NPG Asia Mater. 2015, 7, e179.
[26]
Wu, K.; Fu, X. P.; Yu, W. Z.; Wang, W. W.; Jia, C. J.; Du, P. P.; Si, R.; Wang, Y. H.; Li, L. D.; Zhou, L. et al. Pt-embedded CuOx-CeO2 multicore-shell composites: Interfacial redox reaction-directed synthesis and composition-dependent performance for CO oxidation. ACS Appl. Mater. Interfaces 2018, 10, 34172-34183.
[27]
Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 Multicore@Shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864-15872.
[28]
Wang, W. W.; Yu, W. Z.; Du, P. P.; Xu, H.; Jin, Z.; Si, R.; Ma, C.; Shi, S.; Jia, C. J.; Yan, C. H. Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: Importance of metal-support interaction. ACS Catal. 2017, 7, 1313-1329.
[29]
Xia, Y. S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 2011, 6, 580-587.
[30]
Khan, M. M.; Ansari, S. A.; Ansari, M. O.; Min, B. K.; Lee, J.; Cho, M. H. Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J. Phys. Chem. C 2014, 118, 9477-9484.
[31]
Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/Ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265-2279.
[32]
Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J. Am. Chem. Soc. 2015, 137, 13452-13455.
[33]
Zhao, P. X.; Feng, X. W.; Huang, D. S.; Yang, G. Y.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015, 287, 114-136.
[34]
Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410-9431.
[35]
Cheng, X. S.; Wang, D. X.; Liu, J. C.; Kang, X.; Yan, H. J.; Wu, A. P.; Gu, Y.; Tian, C. G.; Fu, H. G. Ultra-small Mo2N on SBA-15 as a highly efficient promoter of low-loading Pd for catalytic hydrogenation. Nanoscale 2018, 10, 22348-22356.
[36]
Cai, R. S.; Ellis, P. R.; Yin, J. L.; Liu, J.; Brown, C. M.; Griffin, R.; Chang, G. J.; Yang, D. J.; Ren, J.; Cooke, K. et al. Performance of preformed Au/Cu Nanoclusters deposited on MgO powders in the catalytic reduction of 4-nitrophenol in solution. Small 2018, 14, 1703734.
[37]
Evangelista, V.; Acosta, B.; Miridonov, S.; Smolentseva, E.; Fuentes, S.; Simakov, A. Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl. Catal. B: Environ. 2015, 166-167, 518-528.
[38]
Zheng, J. M.; Dong, Y. L.; Wang, W. F.; Ma, Y. H.; Hu, J.; Chen, X. J.; Chen, X. G. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity. Nanoscale 2013, 5, 4894-4901.
[39]
Gao, G.; Xi, Q. Y.; Zhang, Y. Q.; Jin, M. Y.; Zhao, Y. X.; Wu, C. Q.; Zhou, H.; Guo, P. R.; Xu, J. W. Atomic-scale engineering of MOF array confined Au nanoclusters for enhanced heterogeneous catalysis. Nanoscale 2019, 11, 1169-1176.
[40]
Zhang, C.; Cheng, X.; Guo, Z. M.; Lv, Z. G. A multi-metal PtAgAu@CeO2 core-shell nanocatalyst with improved catalytic performance. New J. Chem. 2019, 43, 561-563.
[41]
Li, K. K.; Jiao, T. F.; Xing, R. R.; Zou, G. D.; Zhou, J. X.; Zhang, L. X.; Peng, Q. M. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater. 2018, 61, 728-736.
[42]
Lv, J. J.; Wang, A. J.; Ma, X. H.; Xiang, R. Y.; Chen, J. R.; Feng, J. J. One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290-296.
[43]
Lee, S.; Seo, J.; Jung, W. C. Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis. Nanoscale 2016, 8, 10219-10228.
[44]
Yang, C. W.; Yu, X. J.; Heißler, S.; Nefedov, A.; Colussi, S.; Llorca, J.; Trovarelli, A.; Wang, Y. M.; Wöll, C. Surface faceting and reconstruction of ceria nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 375-379.
[45]
Chen, G. Z.; Guo, Z. Y.; Zhao, W.; Gao, D. W.; Li, C. C.; Ye, C.; Sun, G. X. Design of porous/hollow structured ceria by partial thermal decomposition of Ce-MOF and selective etching. ACS Appl. Mater. Interfaces 2017, 9, 39594-39601.
[46]
Wang, W. W.; Du, P. P.; Zou, S. H.; He, H. Y.; Wang, R. X.; Jin, Z.; Shi, S.; Huang, Y. Y.; Si, R.; Song, Q. S. et al. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal. 2015, 5, 2088-2099.
[47]
Li, W. Z.; Kovarik, L.; Mei, D. H.; Liu, J.; Wang, Y.; Peden, C. H. F. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun. 2013, 4, 2481.
[48]
Liu, X. Y.; Wang, A. Q.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F. Structural changes of Au-Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 2011, 278, 288-296.
[49]
Wang, Q.; Li, Y. J.; Liu, B. C.; Dong, Q.; Xu, G. R.; Zhang, L.; Zhang, J. Novel recyclable dual-heterostructured Fe3O4@CeO2/M (M = Pt, Pd and Pt-Pd) catalysts: Synergetic and redox effects for superior catalytic performance. J. Mater. Chem. A 2015, 3, 139-147.
[50]
Chen, C.; Fang, X. L.; Wu, B. H.; Huang, L. J.; Zheng, N. F. A multi-yolk-shell structured nanocatalyst containing sub-10 nm Pd nanoparticles in porous CeO2. ChemCatChem 2012, 4, 1578-1586.
[51]
Guo, X. D.; Kan, H. P.; Liu, X. X.; Geng, H. S.; Wang, L. Y. Facile synthesis of hollow hierarchical Ni@C nanocomposites with well-dispersed high-loading Ni nanoparticles embedded in carbon for reduction of 4-nitrophenol. RSC Adv. 2018, 8, 15999-16003.
[52]
Shao, B.; Zhang, J. Y.; Huang, J. H.; Qiao, B. T.; Su, Y.; Miao, S.; Zhou, Y.; Li, D.; Huang, W. X.; Shen, W. J. Size-dependency of gold nanoparticles on TiO2 for CO oxidation. Small 2018, 2, 1800273.
[53]
Li, W. G.; Hu, Y. J.; Jiang, H.; Jiang, N.; Bi, W.; Li, C. Z. Litchi-peel-like hierarchical hollow copper-ceria microspheres: Aerosol-assisted synthesis and high activity and stability for catalytic CO oxidation. Nanoscale 2018, 10, 22775-22786.
[54]
Kundu, A.; Park, B.; Ray, C.; Oh, J.; Jun, S. C. Environmentally benign and cost-effective synthesis of water soluble red light emissive gold nanoclusters: Selective and ultra-sensitive detection of mercuric ions. New J. Chem. 2019, 43, 900-906.
[55]
Ye, L.; Duan, X. P.; Wu, S.; Wu, T. S.; Zhao, Y. X.; Robertson, A. W.; Chou, H. L.; Zheng, J. W.; Ayvalı, T.; Day, S. et al. Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nat. Commun. 2019, 10, 914.
[56]
Cai, J. M.; Zhang, J.; Cao, K.; Gong, M.; Lang, Y.; Liu, X.; Chu, S. Q.; Shan, B.; Chen, R. Selective passivation of Pt nanoparticles with enhanced sintering resistance and activity toward CO oxidation via atomic layer deposition. ACS Appl. Nano Mater. 2018, 1, 522-530.
[57]
Liu, B. C.; Wang, Q.; Yu, S. L.; Zhao, T.; Han, J. X.; Jing, P.; Hu, W. T.; Liu, L. X.; Zhang, J.; Sun, L. D. et al. Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application. Nanoscale 2013, 5, 9747-9757.
[58]
Chen, G. Z.; Wang, Y.; Wei, Y. W.; Zhao, W.; Gao, D. W.; Yang, H. X.; Li, C. C. Successive interfacial reaction-directed synthesis of CeO2@Au@CeO2-MnO2 environmental catalyst with sandwich hollow structure. ACS Appl. Mater. Interfaces 2018, 10, 11595-11603.
[59]
Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W. J.; Stevenson, K. J.; Henkelman, G. A systematic investigation of p-Nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598-7604.
[60]
Dai, H. B.; Liang, Y.; Ma, L. P.; Wang, P. New insights into catalytic hydrolysis kinetics of sodium borohydride from michaelis-menten model. J. Phys. Chem. C 2008, 112, 15886-15892.
[61]
Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814-8820.
[62]
Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.
[63]
Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203-6215.
[64]
Jiang, H. L.; Xu, Q. Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem. 2011, 21, 13705-13725.
[65]
Duan, X. M.; Liu, J.; Hao, J. F.; Wu, L. M.; He, B. J.; Qiu, Y.; Zhang, J.; He, Z. L.; Xi, J. B.; Wang, S. Magnetically recyclable nanocatalyst with synergetic catalytic effect and its application for 4-nitrophenol reduction and Suzuki coupling reactions. Carbon 2018, 130, 806-813.
[66]
Liang, X.; Xiao, J. J.; Chen, B. H.; Li, Y. D. Catalytically stable and active CeO2 mesoporous spheres. Inorg. Chem. 2010, 49, 8188-8190.
[67]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115-13118.
[68]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[69]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.
[70]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[71]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[72]
Ke, J.; Zhu, W.; Jiang, Y. Y.; Si, R.; Wang, Y. J.; Li, S. C.; Jin, C. H.; Liu, H. C.; Song, W. G.; Yan, C. H. et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal. 2015, 5, 5164-5173.
File
12274_2020_2806_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2020
Revised: 24 March 2020
Accepted: 10 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Nos. 21590791, 21771005, 21931001, and 21927901), and Ministry of Science and Technology (MOST) of China (Nos. 2014CB643803, 2017YFA0205101, and 2017YFA0205104). The computational work was supported by the High-performance Computing Platform of Peking University. K. W. specifically thanks the National Postdoctoral Program for Innovative Talents under grant no. BX20190005, and the China Postdoctoral Science Foundation (No. 2019M660293).

Return