Journal Home > Volume 13 , Issue 6

Vanadium dichalcogenides have attracted increasing interests for the charge density wave phenomena and possible ferromagnetism. Here, we report on the multiphase behavior and gap opening in monolayer VTe2 grown by molecular beam epitaxy. Scanning tunneling microscopy (STM) and spectroscopy study revealed the (4×4) metallic and gapped (2 3 ×2 3 ) charge-density wave (CDW) phases with an energy gap of ~ 40 meV. Through the in-plane condensation of vanadium atoms, the typical star-of-David clusters and truncated triangle-shaped clusters are formed in the (4×4) and (2 3 ×2 3 ) phases respectively, resulting in different surface morphologies and electronic structures as confirmed by density functional theory (DFT) calculations with on-site Coulomb repulsion. The CDW-driven reorganization of the atomic structure weakens the ferromagnetic superexchange coupling and strengthens the antiferromagnetic exchange coupling on the contrary, suppressing the long-range magnetic order in monolayer VTe2. The electron correlation is found to be important to explain the gap opening in the (2 3 ×2 3 ) phase.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2

Show Author's information Meizhuang Liu§Changwei Wu§Zizhao LiuZhiqiang WangDao-Xin Yao( )Dingyong Zhong( )
School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China

§ Meizhuang Liu and Changwei Wu contributed equally to this work.

Abstract

Vanadium dichalcogenides have attracted increasing interests for the charge density wave phenomena and possible ferromagnetism. Here, we report on the multiphase behavior and gap opening in monolayer VTe2 grown by molecular beam epitaxy. Scanning tunneling microscopy (STM) and spectroscopy study revealed the (4×4) metallic and gapped (2 3 ×2 3 ) charge-density wave (CDW) phases with an energy gap of ~ 40 meV. Through the in-plane condensation of vanadium atoms, the typical star-of-David clusters and truncated triangle-shaped clusters are formed in the (4×4) and (2 3 ×2 3 ) phases respectively, resulting in different surface morphologies and electronic structures as confirmed by density functional theory (DFT) calculations with on-site Coulomb repulsion. The CDW-driven reorganization of the atomic structure weakens the ferromagnetic superexchange coupling and strengthens the antiferromagnetic exchange coupling on the contrary, suppressing the long-range magnetic order in monolayer VTe2. The electron correlation is found to be important to explain the gap opening in the (2 3 ×2 3 ) phase.

Keywords: scanning tunneling microscopy, transition-metal dichalcogenides, charge density wave, 1T-VTe2

References(49)

[1]
Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.
[2]
Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.
[3]
Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forrό, L.; Tutiš, E. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960-965.
[4]
Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270-276.
[5]
Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931-937.
[6]
Wu, S. F.; Fatemi, V.; Gibson, Q. D.; Watanabe, K.; Taniguchi, T.; Cava, R. J.; Jarillo-Herrero, P. Observation of the quantum spin Hall effect up to 100 Kelvin in a monolayer crystal. Science 2018, 359, 76-79.
[7]
Movva, H. C. P.; Fallahazad, B.; Kim, K.; Larentis, S.; Taniguchi, T.; Watanabe, K.; Banerjee, S. K.; Tutuc, E. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 2017, 118, 247701.
[8]
Lu, J. M.; Zheliuk, O.; Leermakers, I.; Yuan, N. F. Q.; Zeitler, U.; Law, K. T.; Ye, J. T. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 2015, 350, 1353-1357.
[9]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[10]
Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92-97.
[11]
Ang, R.; Wang, Z. C.; Chen, C. L.; Tang, J.; Liu, N.; Liu, Y.; Lu, W. J.; Sun, Y. P.; Mori, T.; Ikuhara, Y. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides. Nat. Commun. 2015, 6, 6091.
[12]
Ji, Q. Q.; Li, C.; Wang, J. L.; Niu, J. J.; Gong, Y.; Zhang, Z. P.; Fang, Q. Y.; Zhang, Y.; Shi, J. P.; Liao, L. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017, 17, 4908-4916.
[13]
Feng, J. G.; Biswas, D.; Rajan, A.; Watson, M. D.; Mazzola, F.; Clark, O. J.; Underwood, K.; Marković, I.; McLaren, M.; Hunter, A. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493-4499.
[14]
Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.
[15]
Xing, Y.; Zhao, K.; Shan, P. J.; Zheng, F. P.; Zhang, Y. W.; Fu, H. L.; Liu, Y.; Tian, M. L.; Xi, C. Y.; Liu, H. W. et al. Ising superconductivity and quantum phase transition in macro-size monolayer NbSe2. Nano Lett. 2017, 17, 6802-6807.
[16]
Ma, L. G.; Ye, C.; Yu, Y. J.; Lu, X. F.; Niu, X. H.; Kim, S.; Feng, D. L.; Tománek, D.; Son, Y. W.; Chen, X. H. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat Commun. 2016, 7, 10956.
[17]
Chen, P.; Chan, Y. H.; Fang, X. Y.; Zhang, Y.; Chou, M. Y.; Mo, S. K.; Hussain, Z.; Fedorov, A. V.; Chiang, T. C. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 2015, 6, 8943.
[18]
Shi, J. P.; Chen, X. X.; Zhao, L. Y.; Gong, Y.; Hong, M.; Huan, Y. H.; Zhang, Z. P.; Yang, P. F.; Li, Y.; Zhang, Q. H. et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater. 2018, 30, 1804616.
[19]
Cho, D.; Cho, Y. H.; Cheong, S. W.; Kim, K. S.; Yeom, H. W. Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T-TaS2. Phys. Rev. B 2015, 92, 085132.
[20]
Gao, J. J.; Si, J. G.; Luo, X.; Yan, J.; Chen, F. C.; Lin, G. T.; Hu, L.; Zhang, R. R.; Tong, P., Song, W. H. et al. Origin of the structural phase transition in single-crystal TaTe2. Phys. Rev. B 2018, 98, 224104.
[21]
Umemoto, Y.; Sugawara, K.; Nakata, Y.; Takahashi, T.; Sato, T. Pseudogap, fermi arc, and peierls-insulating phase induced by 3D-2D crossover in monolayer VSe2. Nano Res. 2019, 12, 165-169.
[22]
Duvjir, G.; Choi, B. K.; Jang, I.; Ulstrup, S.; Kang, S.; Thi Ly, T.; Kim, S.; Choi, Y. H.; Jozwiak, C.; Bostwick, A. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 2018, 18, 5432-5438.
[23]
Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forrό, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765-769.
[24]
Yang, J. Y.; Wang, W. K.; Liu, Y.; Du, H. F.; Ning, W.; Zheng, G. L.; Jin, C. M.; Han, Y. Y.; Wang, N.; Yang, Z. R. et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 2014, 105, 063109.
[25]
Lian, C. S.; Si, C.; Duan, W. H. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 2018, 18, 2924-2929.
[26]
Navarro-Moratalla, E.; Island, J. O.; Mañas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.; Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillén, J. A.; Agraït, N. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 2016, 7, 11043.
[27]
Wilson, J. A.; Di Salvo F. J.; Mahajan, S. Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 1974, 32, 882-885.
[28]
Shen, D. W.; Zhang, Y.; Yang, L. X.; Wei, J.; Ou, H. W.; Dong, J. K.; Xie, B. P.; He, C.; Zhao, J. F.; Zhou, B. et al. Primary role of the barely occupied states in the charge density wave formation of NbSe2. Phys. Rev. Lett. 2008, 101, 226406.
[29]
Rice, T. M.; Scott, G. K. New mechanism for a charge-density-wave instability. Phys. Rev. Lett. 1975, 35, 120-123.
[30]
Kiss, T.; Yokoya, T.; Chainani, A.; Shin, S.; Hanaguri, T.; Nohara, M.; Takagi, H. Charge-order-maximized momentum-dependent superconductivity. Nat. Phys. 2017, 3, 720-725.
[31]
Varma, C. M.; Simons, A. L. Strong-coupling theory of charge-density-wave transitions. Phys. Rev. Lett. 1983, 51, 138-141.
[32]
Valla, T.; Fedorov, A. V.; Johnson, P. D.; Glans, P. A.; McGuinness, C.; Smith, K. E.; Andrei, E. Y.; Berger, H. Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. Phys. Rev. Lett. 2004, 92, 086401.
[33]
Johannes, M. D.; Mazin, I. I.; Howells, C. A. Fermi-surface nesting and the origin of the charge-density wave in NbSe2. Phys. Rev. B 2006, 73, 205102.
[34]
Weber, F.; Rosenkranz, S.; Castellan, J. P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K. P.; Egami, T.; Said, A. H.; Reznik, D. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys. Rev. Lett. 2011, 107, 107403.
[35]
Ma, X. Y.; Dai, T.; Dang, S.; Kang, S. D.; Chen, X. X.; Zhou, W. Q.; Wang, G. L.; Li, H. W.; Hu, P.; He, Z. H. et al. Charge density wave phase transitions in large-scale few-layer 1T-VTe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces 2019, 11, 10729-10735.
[36]
Coelho, P. M.; Lasek, K.; Cong, K. N.; Li, J. F.; Niu, W.; Liu, W. Q.; Oleynik, I. I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987-4993.
[37]
Wong, P. K. J.; Zhang, W.; Zhou, J.; Bussolotti, F.; Yin, X. M.; Zhang, L.; N’Diaye, A. T.; Morton, S. A.; Chen, W.; Goh, J. et al. Metallic 1T phase, 3d1 electronic configuration and charge density wave order in molecular beam epitaxy grown monolayer vanadium ditelluride. ACS Nano 2019, 13, 12894-12900.
[38]
Miao, G. Y.; Xue, S. W.; Li, B.; Lin, Z. J.; Liu, B.; Zhu, X. T.; Wang, W. H.; Guo, J. D. Real-space investigation of the charge density wave in VTe2 monolayer with broken rotational and mirror symmetries. Phys. Rev. B 2020, 101, 035407.
[39]
Wang, Y.; Ren, J. H.; Li, J. H.; Wang, Y. J.; Peng, H. N.; Yu, P.; Duan, W. H.; Zhou, S. Y. Evidence of charge density wave with anisotropic gap in a monolayer VTe2 film. Phys. Rev. B 2020, 100, 241404.
[40]
Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246-252.
[41]
Brouwer, R.; Jellinek, F. The low-temperature superstructures of 1T-TaSe2 and 2H-TaSe2. Phys. B+C 1980, 99, 51-55.
[42]
Soumyanarayanan, A.; Yee, M. M.; He, Y.; Van Wezel, J.; Rahn, D. J.; Rossnagel, K.; Hudson, E. W.; Norman, M. R.; Hoffman, J. E. Quantum phase transition from triangular to stripe charge order in NbSe2. Proc. Natl. Acad. Sci. USA 2013, 110, 1623-1627.
[43]
Azizi, A.; Zou, X. L.; Ercius, P.; Zhang, Z. H.; Elías, A. L.; Perea-López, N.; Stone, G.; Terrones, M.; Yakobson, B. I.; Alem, N. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.
[44]
Lv, H. Y.; Lu, W. J.; Shao, D. F.; Liu, Y.; Sun, Y. P. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X = Se, Te) monolayers. Phys. Rev. B 2015, 92, 214419.
[45]
Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 1955, 100, 564-573.
[46]
Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 1959, 115, 2-13.
[47]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[48]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[49]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
File
12274_2020_2799_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2019
Revised: 23 March 2020
Accepted: 07 April 2020
Published: 24 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

D. Y. Z. thanks the financial support from the National Natural Science Foundation Program of China (Nos. 11974431 and 11832019) and the Guangzhou Science and Technology Project (No. 201707020002). C. W. W. and D. X. Y. thank the support from the National Key Research and Development Program of China (Nos. 2017YFA0206203 and 2018YFA0306001), the National Natural Science Foundation Program of China (No. 11974432), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011337) and Leading Talent Program of Guangdong Special Projects. The computation part of the work was supported by National Supercomputer Center in Guangzhou, China.

Return