Journal Home > Volume 13 , Issue 6

Intelligent gas sensors based on the layered transition metal dichalcogenides (TMDs) have attracted great interest in the field of gas sensing due to their multiple active sites, fast electron, mass transfer capability and large surface-to-volume ratio. However, conventional TMDs-based sensors typically work at elevated temperature in inert atmosphere, which would largely limit the corresponding practical applications. Herein, novel oxygen-doped MoSe2 hierarchical nanostructures composed of ultrathin nanosheets with large specific surface area have been designed and generated typically at 200 °C in air for fast and facile gas sensing of trimethylamine (TMA), effectively. Benefited from the gas-accessible hierarchical morphology and high surface area with abundant nanochannels, highly sensitive and selective detection of trace TMA has been achieved under ambient condition, and as detected the theoretical limit of detection (LOD) is 8 ppb, which is the lowest for TMA detection under ambient condition among the reported studies. The mechanism of oxygen doping on the improved gas-sensing performance has been investigated, revealing that the oxygen doping could greatly optimize the electronic structure, thus regulate the Fermi level of MoSe2 as well as the affinity between TMA molecule and sensor surface. It is expected that the oxygen doping strategy developed for the highly efficient gas sensors based on TMDs in present work may also be applicable to other types of gas-sensing semiconductors, which could open up a new direction for the rational design of high-performance gas sensors working under ambient condition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective detection of trace trimethylamine at room temperature in air

Show Author's information Nannan Hou1Qianqian Sun1Jing Yang1Su You1Yun Cheng1Qian Xu2Wei Li1Shiqi Xing1Li Zhang1Junfa Zhu2Qing Yang1( )
Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei 230026, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

Abstract

Intelligent gas sensors based on the layered transition metal dichalcogenides (TMDs) have attracted great interest in the field of gas sensing due to their multiple active sites, fast electron, mass transfer capability and large surface-to-volume ratio. However, conventional TMDs-based sensors typically work at elevated temperature in inert atmosphere, which would largely limit the corresponding practical applications. Herein, novel oxygen-doped MoSe2 hierarchical nanostructures composed of ultrathin nanosheets with large specific surface area have been designed and generated typically at 200 °C in air for fast and facile gas sensing of trimethylamine (TMA), effectively. Benefited from the gas-accessible hierarchical morphology and high surface area with abundant nanochannels, highly sensitive and selective detection of trace TMA has been achieved under ambient condition, and as detected the theoretical limit of detection (LOD) is 8 ppb, which is the lowest for TMA detection under ambient condition among the reported studies. The mechanism of oxygen doping on the improved gas-sensing performance has been investigated, revealing that the oxygen doping could greatly optimize the electronic structure, thus regulate the Fermi level of MoSe2 as well as the affinity between TMA molecule and sensor surface. It is expected that the oxygen doping strategy developed for the highly efficient gas sensors based on TMDs in present work may also be applicable to other types of gas-sensing semiconductors, which could open up a new direction for the rational design of high-performance gas sensors working under ambient condition.

Keywords: oxygen-doped MoSe2 nanosheet, ambient gas sensing, trimethylamine detection, highly selective, trace detection limit

References(54)

[1]
Van den Broek, J.; Abegg, S.; Pratsinis, S. E.; Güntner, A. T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019, 10, 4220.
[2]
Ni, Y. X.; Le, K.; Du, W. J.; Fang, W. J.; Chen, X.; Liu, W.; Wang, Y.; Liu, J. R. High response to nitrogen dioxide derived from antimony peroxide modified tin oxide porous nanocomposites serving as gas sensing material. Sens. Actuators B Chem. 2017, 247, 216-223.
[3]
Wang, P.; Zheng, Z. K.; Cheng, X. L.; Sui, L. L.; Gao, S.; Zhang, X. F.; Xu, Y. M.; Zhao, H.; Huo, L. H. Ionic liquid-assisted synthesis of α-Fe2O3 mesoporous nanorod arrays and their excellent trimethylamine gas-sensing properties for monitoring fish freshness. J. Mater. Chem. A 2017, 5, 19846-19856.
[4]
Cho, Y. H.; Ko, Y. N.; Kang, Y. C.; Kim, I. D.; Lee, J. H. Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis. Sens. Actuators B Chem. 2014, 195, 189-196.
[5]
Lee, S. H.; Lim, J. H.; Park, J.; Hong, S.; Park, T. H. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens. Bioelectron. 2015, 71, 179-185.
[6]
Chen, W.; Deng, F. F.; Xu, M.; Wang, J.; Wei, Z. B.; Wang, Y. W. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B Chem. 2018, 273, 498-504.
[7]
Liu, T.; Liu, J. Y.; Liu, Q.; Song, D. L.; Zhang, H. S.; Zhang, H. G.; Wang, J. Synthesis, characterization and enhanced gas sensing performance of porous ZnCo2O4 nano/microspheres. Nanoscale 2015, 7, 19714-19721.
[8]
Ayad, M. M.; Torad, N. L. Quartz crystal microbalance sensor for detection of aliphatic amines vapours. Sens. Actuators B Chem. 2010, 147, 481-487.
[9]
Zhang, F. D.; Dong, X.; Cheng, X. L.; Xu, Y. M.; Zhang, X. F.; Huo, L. H. Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres. ACS Appl. Mater. Interfaces 2019, 11, 11755-11762.
[10]
Li, F.; Zhang, T.; Gao, X.; Wang, R.; Li, B. H. Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sens. Actuators B Chem. 2017, 252, 822-830.
[11]
Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J. C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 1323-1344.
[12]
Yang, S.; Liu, Y. L.; Chen, W.; Jin, W.; Zhou, J.; Zhang, H.; Zakharova, G. S. High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B Chem. 2016, 226, 478-485.
[13]
Kim, K. M.; Choi, K. I.; Jeong, H. M.; Kim, H. J.; Kim, H. R.; Lee, J. H. Highly sensitive and selective trimethylamine sensors using Ru-doped SnO2 hollow spheres. Sens. Actuators B Chem. 2012, 166-167, 733-738.
[14]
Jin, H. T.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337-6408.
[15]
Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744-7803.
[16]
Yang, Y. B.; Yang, X. D.; Zou, X. M.; Wu, S. T.; Wan, D.; Cao, A. Y.; Liao, L.; Yuan, Q.; Duan, X. F. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 2017, 27, 1604096.
[17]
Zhang, X.; Lai, Z. C.; Ma, Q. L.; Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 2018, 47, 3301-3338.
[18]
Wang, S. Z.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal-organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.
[19]
Pan, Q. C.; Zhang, Q. B.; Zheng, F. H.; Liu, Y. Z.; Li, Y. P.; Ou, X.; Xiong, X. H.; Yang, C. H.; Liu, M. L. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano 2018, 12, 12578-12586.
[20]
Wang, Z. L.; Molina-Sánchez, A.; Altmann, P.; Sangalli, D.; De Fazio, D.; Soavi, G.; Sassi, U.; Bottegoni, F.; Ciccacci, F.; Finazzi, M. et al. Intravalley spin-flip relaxation dynamics in single-layer WS2. Nano Lett. 2018, 18, 6882-6891.
[21]
Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409-6455.
[22]
Zhang, D. Z.; Wu, J. F.; Li, P.; Cao, Y. H. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A 2017, 5, 20666-20677.
[23]
Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.
[24]
Baek, J.; Yin, D. M.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Hong, S.; Kim, S. M.; Hong, Y. K.; Hur, J. et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017, 10, 1861-1871.
[25]
Ikram, M.; Liu, L. J.; Liu, Y.; Ma, L. F.; Lv, H.; Ullah, M.; He, L.; Wu, H. Y.; Wang, R. H.; Shi, K. Y. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 2019, 7, 14602-14612.
[26]
Koo, W. T.; Cha, J. H.; Jung, J. W.; Choi, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: Abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 2018, 28, 1802575.
[27]
Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852-2862.
[28]
Zhang, D. Z.; Sun, Y. E.; Jiang, C. X.; Yao, Y.; Wang, D. Y.; Zhang, Y. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens. Actuators B Chem .2017, 253, 1120-1128.
[29]
Kuru, C.; Choi, C.; Kargar, A.; Choi, D.; Kim, Y. J.; Liu, C. H.; Yavuz, S.; Jin, S. MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2015, 2, 1500004.
[30]
Su, S.; Sun, H. F.; Xu, F.; Yuwen, L. H.; Wang, L. H. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 2013, 25, 2523-2529.
[31]
Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287-3292.
[32]
Yang, C. Y.; Wang, Z.; Lin, T. Q.; Yin, H.; Lü, X. J.; Wan, D. Y.; Xu, T.; Zheng, C.; Lin, J. H.; Huang, F. Q. et al. Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 2013, 135, 17831-17838.
[33]
Gong, J.; Antonietti, M.; Yuan, J. J. Poly(ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing. Angew. Chem., Int. Ed .2017, 56, 7557-7563.
[34]
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.
[35]
Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.
[36]
Zhu, H.; McDonnell, S.; Qin, X. Y.; Azcatl, A.; Cheng, L. X.; Addou, R.; Kim, J.; Ye, P. D.; Wallace, R. M. Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Interfaces 2015, 7, 13038-13043.
[37]
Zhao, J. Y.; Zhang, J. M. Modulating the band gap of the FeS2 by O and Se doping. J. Phys. Chem. C 2017, 121, 19334-19340.
[38]
Lu, Q.; Zhao, Q.; Yang, T. Y.; Zhai, C. B.; Wang, D. X.; Zhang, M. Z. Preparation of boron nitride nanoparticles with oxygen doping and a study of their room-temperature ferromagnetism. ACS Appl. Mater. Interfaces 2018, 10, 12947-12953.
[39]
Zhou, X. L.; Jiang, J.; Ding, T.; Zhang, J. J.; Pan, B. C.; Zuo, J.; Yang, Q. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for high-performance hydrogen evolution. Nanoscale 2014, 6, 11046-11051.
[40]
Meng, F. L.; Hou, N. N.; Jin, Z.; Sun, B.; Li, W. Q.; Xiao, X. H.; Wang, C.; Li, M. Q.; Liu, J. H. Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B Chem. 2015, 219, 209-217.
[41]
Sun, Y.; Meng, J.; Ju, H. X.; Zhu, J. F.; Li, Q. X.; Yang, Q. Electrochemical activity of 1T′ structured rhenium selenide nanosheets via electronic structural modulation from selenium-vacancy generation. J. Mater. Chem. A 2018, 6, 22526-22533.
[42]
Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352-3359.
[43]
Ji, W. X.; Shen, R.; Yang, R.; Yu, G. Y.; Guo, X. F.; Peng, L. M.; Ding, W. P. Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 699-704.
[44]
Fan, Y. M.; Zhuo, Y. Q.; Li, L. L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules. Appl. Surf. Sci. 2017, 420, 465-471.
[45]
Rim, Y. S.; Kim, D. L.; Jeong, W. H.; Kim, H. J. Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl. Phys. Lett. 2010, 97, 233502.
[46]
Huang, G. M.; Duan, L.; Dong, G. F.; Zhang, D. Q.; Qiu, Y. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode. ACS Appl. Mater. Interfaces 2014, 6, 20786-20794.
[47]
Chen, X.; Guo, Z.; Xu, W. H.; Yao, H. B.; Li, M. Q.; Liu, J. H.; Huang, X. J.; Yu, S. H. Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 2011, 21, 2049-2056.
[48]
Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733-11740.
[49]
Pavelko, R. G.; Yuasa, M.; Kida, T.; Shimanoe, K.; Yamazoe, N. Impurity level in SnO2 materials and its impact on gas sensing properties. Sens. Actuators B Chem. 2015, 210, 719-725.
[50]
Kannan, P. K.; Late, D. J.; Morgan, H.; Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293-13312.
[51]
Baber, N. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH). Br. J. Clin. Pharmacol .1994, 37, 401-404.
[52]
Kauffman, D. R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem., Int. Ed .2008, 47, 6550-6570.
[53]
D’Arienzo, M.; Cristofori, D.; Scotti, R.; Morazzoni, F. New insights into the SnO2 sensing mechanism based on the properties of shape controlled tin oxide nanoparticles. Chem. Mater. 2013, 25, 3675-3686.
[54]
Cui, S. M.; Wen, Z. H.; Huang, X. K.; Chang, J. B.; Chen, J. H. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 2015, 11, 2305-2313.
File
12274_2020_2796_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2019
Revised: 09 March 2020
Accepted: 07 April 2020
Published: 28 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1932150 and 21571166), Anhui Provincial Natural Science Foundation (No. 1908085QB72) and the Fundamental Research Funds for the Central Universities (No. WK2060190099).

Return