Journal Home > Volume 13 , Issue 6

Fiber-shaped supercapacitors (FSCs), owing to their high-power density and feasibility to be integrated into woven clothes, have drawn tremendous attentions as a key device for flexible energy storage. However, how to store more energy while withstanding various types of mechanical deformation is still a challenge for FSCs. Here, based on a magnetron sputtering method, different pseudocapacitive materials are conformally coated on self-supported carbon nanotube aligned films. This fabrication approach enables a stretchable, asymmetric, coaxial fiber-shaped supercapacitors with high performance. The asymmetric electrode configuration that consists of CNT@NiO@MnOx cathode and CNT@Fe2O3 anode successfully extends the FSC’s electrochemical window to 1.8 V in an aqueous electrolyte. As a result, a high specific capacitance of 10.4 F·cm-3 is achieved at a current density of 30 mA·cm-3 corresponding to a high energy density of 4.7 mWh·cm-3. The mechanical stability of the stretchable FSC is demonstrated with a sustainable performance under strains up to 75% and a capacitance retention of 95% after 2,000 cycles under 75% strain.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics

Show Author's information Hua Yuan1Guang Wang1Yuxing Zhao1Yang Liu1Yang Wu2( )Yuegang Zhang1( )
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
Tsinghua-Foxconn Nanotechnology Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Fiber-shaped supercapacitors (FSCs), owing to their high-power density and feasibility to be integrated into woven clothes, have drawn tremendous attentions as a key device for flexible energy storage. However, how to store more energy while withstanding various types of mechanical deformation is still a challenge for FSCs. Here, based on a magnetron sputtering method, different pseudocapacitive materials are conformally coated on self-supported carbon nanotube aligned films. This fabrication approach enables a stretchable, asymmetric, coaxial fiber-shaped supercapacitors with high performance. The asymmetric electrode configuration that consists of CNT@NiO@MnOx cathode and CNT@Fe2O3 anode successfully extends the FSC’s electrochemical window to 1.8 V in an aqueous electrolyte. As a result, a high specific capacitance of 10.4 F·cm-3 is achieved at a current density of 30 mA·cm-3 corresponding to a high energy density of 4.7 mWh·cm-3. The mechanical stability of the stretchable FSC is demonstrated with a sustainable performance under strains up to 75% and a capacitance retention of 95% after 2,000 cycles under 75% strain.

Keywords: fiber, magnetron sputtering, supercapacitor, asymmetric configuration, coaxial, pseudocapacitive material

References(58)

[1]
Chen, Q.; Meng, Y. N.; Hu, C. G; Zhao, Y.; Shao, H. B.; Chen, N.; Qu, L. T. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 2014, 247, 32-39.
[2]
Chen, T.; Qiu, L. B.; Yang, Z. B.; Cai, Z. B.; Ren, J.; Li, H. P.; Lin, H. J.; Sun, X. M.; Peng, H. S. An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem., Int. Ed. 2012, 51, 11977-11980.
[3]
Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.
[4]
Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 2013, 6, 805-812.
[5]
Kim, D.; Keum, K.; Lee, G.; Kim, D.; Lee, S. S.; Ha, J. S. Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/No2 sensors on textiles. Nano Energy 2017, 35, 199-206.
[6]
Zhang, Q. C.; Xu, W. W.; Sun, J.; Pan, Z. H.; Zhao, J. X.; Wang, X. N.; Zhang, J.; Man, P.; Guo, J. B.; Zhou, Z. Y. et al. Constructing ultrahigh-capacity zinc-nickel-cobalt Oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett. 2017, 17, 7552-7560.
[7]
Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 2012, 24, 5713-5718.
[8]
Lin, R.; Zhu, Z. H.; Yu, X.; Zhong, Y.; Wang, Z. L.; Tan, S. Z.; Zhao, C. X.; Mai, W. J. Facile synthesis of Tio2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance. J. Mater. Chem. A 2017, 5, 814-821.
[9]
Meng, Q. H.; Wu, H. P.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100-4106.
[10]
Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem., Int. Ed. 2014, 53, 1849-1853.
[11]
Zhang, Z. Y.; Xiao, F.; Wang, S. Hierarchically structured MnO2/ graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 11215-11223.
[12]
Zhou, Z. Y.; Zhang, Q. C.; Sun, J.; He, B.; Guo, J. B.; Li, Q. L.; Li, C. W.; Xie, L. Y.; Yao, Y. G. Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 2018, 12, 9333-9341.
[13]
Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448-6451.
[14]
Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. et al. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 2017, 7, 1600976.
[15]
Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230-237.
[16]
Xu, P.; Wei, B. Q.; Cao, Z. Y.; Zheng, J.; Gong, K.; Li, F. X.; Yu, J. Y.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 2015, 9, 6088-6096.
[17]
Chen, X. L.; Qiu, L. B.; Ren, J.; Guan, G. Z.; Lin, H. J.; Zhang, Z. T.; Chen, P. N.; Wang, Y. G.; Peng, H. S. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 2013, 25, 6436-6441.
[18]
Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453-13457.
[19]
Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356-362.
[20]
Harrison, D.; Qiu, F. L.; Fyson, J.; Xu, Y. M.; Evans, P.; Southee, D. A coaxial single fibre supercapacitor for energy storage. Phys. Chem. Chem. Phys. 2013, 15, 12215-12219.
[21]
Qiu, Y. C.; Li, G. Z.; Hou, Y.; Pan, Z. H.; Li, H. F.; Li, W. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem. Mater. 2015, 27, 1194-1200.
[22]
Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233-9280.
[23]
Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148-1158.
[24]
Zhang, Y. B.; Wang, B.; Liu, F.; Cheng, J. P.; Zhang, X. W.; Zhang, L. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 2016, 27, 627-637.
[25]
Zhang, Q. C.; Wang, X. N.; Pan, Z. H.; Sun, J.; Zhao, J. X.; Zhang, J.; Zhang, C. X.; Tang, L.; Luo, J.; Song, B. et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 2017, 17, 2719-2726.
[26]
Zeng, Y. X.; Han, Y.; Zhao, Y. T.; Zeng, Y.; Yu, M. H.; Liu, Y. J.; Tang, H. L.; Tong, Y. X.; Lu, X. H. Advanced Ti-Doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Materi. 2015, 5, 1402176.
[27]
Tang, X.; Jia, R. Y.; Zhai, T.; Xia, H. Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 27518-27525.
[28]
Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 2014, 26, 3148-3155.
[29]
Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1606728.
[30]
Ray, A.; Roy, A.; Saha, S.; Ghosh, M.; Chowdhury, S. R.; Maiyalagan, T.; Bhattacharya, S. K.; Das, S. Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric supercapacitor application. Langmuir 2019, 35, 8257-8267.
[31]
Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697-1721.
[32]
Wei, C. Z.; Cheng, C.; Ma, L.; Liu, M. N.; Kong, D. C.; Du, W. M.; Pang, H. Mesoporous hybrid NiOx-MnOx nanoprisms for flexible solid-state asymmetric supercapacitors. Dalton Trans. 2016, 45, 10789-10797.
[33]
Karmakar, S.; Behera, D. J. C. I. Small polaron hopping conduction in NiMnO3/NiMn2O4 nano-cotton and its emerging energy application with MWCNT. Ceram. Int. 2019, 45, 13052-13066.
[34]
Nguyen, T.; Boudard, M.; Rapenne, L.; Carmezim, M. J.; Montemor, M. F. Morphological changes and electrochemical response of mixed nickel manganese oxides as charge storage electrodes. J. Mater. Chem. A 2015, 3, 10875-10882.
[35]
Le, V. T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q. A.; Pham, D. T.; Lee, J. H.; Kim, S. W.; Lee, Y. H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 2013, 7, 5940-5947.
[36]
Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683-1687.
[37]
Ma, S. C.; Wu, Y.; Wang, J. W.; Zhang, Y. L.; Zhang, Y. T.; Yan, X. X.; Wei, Y.; Liu, P.; Wang, J. P.; Jiang, K. L. et al. Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett. 2015, 15, 8084-8090.
[38]
Kelly, P. J.; Arnell, R. D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159-172.
[39]
Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.
[40]
Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505-1510.
[41]
Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512-514.
[42]
Chastain, J.; King, Jr, R. C. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, 1992.
[43]
Shalvoy, R. B.; Reucroft, P. J.; Davis, B. H. Characterization of coprecipitated nickel on silica methanation catalysts by x-ray photoelectron spectroscopy. J. Catal. 1979, 56, 336-348.
[44]
Oku, M.; Hirokawa, K. X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 475-481.
[45]
Mathieu, H. J.; Landolt, D. An investigation of thin oxide films thermally grown in situ on Fe-24 Cr and Fe-24 Cr-11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corros. Sci. 1986, 26, 547-559.
[46]
Choi, C.; Sim, H. J.; Spinks, G. M.; Lepró, X.; Baughman, R. H.; Kim, S. J. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor. Adv. Energy Mater. 2016, 6, 1502119.
[47]
Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140-3148.
[48]
Wu, C. H.; Ma, J. S.; Lu, C. H. Synthesis and characterization of nickel-manganese oxide via the hydrothermal route for electrochemical capacitors. Curr. Appl. Phys. 2012, 12, 1190-1194.
[49]
Kim, H.; Popov, B. N. Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 2003, 150, D56-D62.
[50]
Lee, K. K.; Deng, S.; Fan, H. M.; Mhaisalkar, S.; Tan, H. R.; Tok, E. S.; Loh, K. P.; Chin, W. S.; Sow, C. H. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 2012, 4, 2958-2961.
[51]
Low, Q. X.; Ho, G. W. Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano Energy 2014, 5, 28-35.
[52]
Cheng, X. P.; Gui, X. C.; Lin, Z. Q.; Zheng, Y. J.; Liu, M.; Zhan, R. Z.; Zhu, Y.; Tang, Z. K. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 20927-20934.
[53]
Gund, G. S.; Dubal, D. P.; Chodankar, N. R.; Cho, J. Y.; Gomez-Romero, P.; Park, C.; Lokhande, C. D. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep. 2015, 5, 12454.
[54]
Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 2015, 5, 9387.
[55]
Zhao, Y. M.; Dong, D. S.; Wang, Y.; Gong, S.; An, T. C.; Yap, L. W.; Cheng, W. L. Highly stretchable fiber-shaped supercapacitors based on ultrathin gold nanowires with double-helix winding design. ACS Appl. Mater. Interfaces 2018, 10, 42612-42620.
[56]
Pan, Z. H.; Yang, J.; Li, L. H.; Gao, X. R.; Kang, L. X.; Zhang, Y. F.; Zhang, Q. C.; Kou, Z. K.; Zhang, T.; Wei, L. et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater. 2020, 25, 124-130.
[57]
Yu, J. L.; Lu, W. B.; Smith, J. P.; Booksh, K. S.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Byun, J. H.; Oh, Y.; Yan, Y. S. et al. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 2017, 7, 1600976.
[58]
Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed. 2014, 53, 14564-14568.
File
12274_2020_2793_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 January 2020
Revised: 23 February 2020
Accepted: 05 April 2020
Published: 11 May 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB0100100), the National Natural Science Foundation of China (Nos. 21433013, U1832218, and 21975140).

Return