Journal Home > Volume 14 , Issue 2

Cu-TDPAT (H6TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine), a stable nanoporous metal-organic framework with rht topology, has sparked broad interest as an adsorbent for several chemical separation processes. In this work, in situ synchrotron diffraction experiments followed by sequential LeBail refinements reveal that Cu-TDPAT shows unusually large anisotropic negative thermal expansion (NTE). The PASCal crystallography tool, used to analyze the magnitude of the NTE, reveals an average volumetric thermal expansion coefficient αV = -20.3 MK-1. This value is significantly higher than the one reported for Cu-BTC (also known as HKUST-1), which contains the same Cu-paddlewheel building unit, αV ≈ -12 MK-1. In situ synchrotron single crystal X-ray diffraction and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were employed to shed light on the NTE mechanism. Using these two methods, we were able to elucidate the three main structural motions that are responsible for the NTE effect. The more pronounced NTE behavior of Cu-TDPAT is attributed to the lower symmetry combined with the more complex ligand structure when compared to Cu-BTC. The knowledge obtained in this work is important for understanding the behavior of the adsorbent under transient variable temperature conditions in fixed adsorption beds.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large anisotropic negative thermal expansion in Cu-TDPAT metal-organic framework: A combined in situ X-ray diffraction and DRIFTS study

Show Author's information Mehrdad Asgari1Ilia Kochetygov1Hassan Abedini1,2Wendy L. Queen1,( )
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) - Valais Wallis, CH-1951 Sion, Switzerland
Gas Engineering Department, Faculty of Petroleum, Petroleum University of Technology (PUT), Ahwaz 61991-71183, Iran

Abstract

Cu-TDPAT (H6TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine), a stable nanoporous metal-organic framework with rht topology, has sparked broad interest as an adsorbent for several chemical separation processes. In this work, in situ synchrotron diffraction experiments followed by sequential LeBail refinements reveal that Cu-TDPAT shows unusually large anisotropic negative thermal expansion (NTE). The PASCal crystallography tool, used to analyze the magnitude of the NTE, reveals an average volumetric thermal expansion coefficient αV = -20.3 MK-1. This value is significantly higher than the one reported for Cu-BTC (also known as HKUST-1), which contains the same Cu-paddlewheel building unit, αV ≈ -12 MK-1. In situ synchrotron single crystal X-ray diffraction and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were employed to shed light on the NTE mechanism. Using these two methods, we were able to elucidate the three main structural motions that are responsible for the NTE effect. The more pronounced NTE behavior of Cu-TDPAT is attributed to the lower symmetry combined with the more complex ligand structure when compared to Cu-BTC. The knowledge obtained in this work is important for understanding the behavior of the adsorbent under transient variable temperature conditions in fixed adsorption beds.

Keywords: metal-organic frameworks, negative thermal expansion, Cu-TDPAT, in situ diffraction, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

References(45)

[1]
W. Miller,; C. W. Smith,; D. S. Mackenzie,; K. E. Evans, Negative thermal expansion: A review. J. Mater. Sci. 2009, 44, 5441-5451.
[2]
J. S. O. Evans, Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 1999, 3317-3326.
[3]
L. Wang,; C. Wang,; Y. Sun,; K. W. Shi,; S. H. Deng,; H. Q. Lu, Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study. Mater. Chem. Phys. 2016, 175, 138-145.
[4]
C. Closmann,; A. W. Sleight,; J. C. Haygarth, Low-temperature synthesis of ZrW2O8 and Mo-substituted ZrW2O8. J. Solid State Chem. 1998, 139, 424-426.
[5]
A. Versluis,; W. H. Douglas,; R. L. Sakaguchi, Thermal expansion coefficient of dental composites measured with strain gauges. Dent. Mater. 1996, 12, 290-294.
[6]
A. W. Sleight, Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 1998, 3, 128-131.
[7]
Y. Wu,; A. Kobayashi,; G. J. Halder,; V. K. Peterson,; K. W. Chapman,; N. Lock,; P. D. Southon,; C. J. Kepert, Negative thermal expansion in the metal-organic framework material Cu3(1,3,5- benzenetricarboxylate)2. Angew. Chem., Int. Ed. 2008, 47, 8929-8932.
[8]
T. A. Mary,; J. S. O. Evans,; T. Vogt,; A. W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90-92.
[9]
G. Ernst,; C. Broholm,; G. R. Kowach,; A. P. Ramirez, Phonon density of states and negative thermal expansion in ZrW2O8. Nature 1998, 396, 147-149.
[10]
P. Lightfoot,; D. A. Woodcock,; M. J. Maple,; L. A. Villaescusa,; P. A. Wright, The widespread occurrence of negative thermal expansion in zeolites. J. Mater. Chem. 2001, 11, 212-216.
[11]
A. E. Phillips,; A. L. Goodwin,; G. J. Halder,; P. D. Southon,; C. J. Kepert, Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. Angew. Chem. 2008, 120, 1418-1421.
[12]
K. W. Chapman,; P. J. Chupas,; C. J. Kepert, Compositional dependence of negative thermal expansion in the prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 2006, 128, 7009-7014.
[13]
A. L. Goodwin,; C. J. Kepert, Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 2005, 71, 140301.
[14]
Y. Wu,; V. K. Peterson,; E. Luks,; T. A. Darwish,; C. J. Kepert, Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Angew. Chem., Int. Ed. 2014, 53, 5175-5178.
[15]
W. Zhou,; H. Wu,; T. Yildirim,; J. R. Simpson,; A. R. H. Walker, Origin of the exceptional negative thermal expansion in metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3. Phys. Rev. B 2008, 78, 054114.
[16]
G. Férey, Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191-214.
[17]
M. Asgari,; S. Jawahery,; E. D. Bloch,; M. R. Hudson,; R. Flacau,; B. Vlaisavljevich,; J. R. Long,; C. M. Brown,; W. L. Queen, An experimental and computational study of CO2 adsorption in the sodalite-type M-BTT (M = Cr, Mn, Fe, Cu) metal-organic frameworks featuring open metal sites. Chem. Sci. 2018, 9, 4579-4588.
[18]
M. Asgari,; R. Semino,; P. Schouwink,; I. Kochetygov,; O. Trukhina,; J. D. Tarver,; S. Bulut,; S. L. Yang,; C. M. Brown,; M. Ceriotti, et al. An in-situ neutron diffraction and DFT study of hydrogen adsorption in a sodalite-type metal-organic framework, Cu-BTTri. Eur. J. Inorg. Chem. 2019, 2019, 1147-1154.
[19]
M. Asgari,; R. Semino,; P. Schouwink,; I. Kochetygov,; D. Tarver,; O. Trukhina,; R. Krishna,; C. M. Brown,; M. Ceriotti,; W. Queen, Dry post-combustion CO2 capture: The effect of ligand properties on the efficiency of M-BTTri family of frameworks. Chem. Mater. 2020, 32, 1526-1536.
[20]
P. Z. Moghadam,; A. Li,; S. B. Wiggin,; A. D. Tao,; A. G. P. Maloney,; P. A. Wood,; S. C. Ward,; D. Fairen-Jimenez, Development of a cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chemi. Mater. 2017, 29, 2618-2625.
[21]
K. C. Stylianou,; W. L. Queen, Recent advances in carbon capture with metal-organic frameworks. CHIMIA Int. J. Chem. 2015, 69, 274-283.
[22]
I. M. Hönicke,; I. Senkovska,; V. Bon,; I. A. Baburin,; N. Bönisch,; S. Raschke,; J. D. Evans,; S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem., Int. Ed. 2018, 57, 13780-13783.
[23]
H. L. Zhou,; Y. B. Zhang,; J. P. Zhang,; X. M. Chen, Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour. Nat. Commun. 2015, 6, 6917.
[24]
H. L. Zhou,; J. Bai,; J. W. Ye,; Z. W. Mo,; W. X. Zhang,; J. P. Zhang,; X. M. Chen, Thermal and gas dual-responsive behaviors of an expanded uio-66-type porous coordination polymer. ChemPlusChem 2016, 81, 817-821.
[25]
D. Dubbeldam,; K. S. Walton,; D. E. Ellis,; R. Q. Snurr, Exceptional negative thermal expansion in isoreticular metal-organic frameworks. Angew. Chem. 2007, 119, 4580-4583.
[26]
N. Lock,; Y. Wu,; M. Christensen,; L. J. Cameron,; V. K. Peterson,; A. J. Bridgeman,; C. J. Kepert,; B. B. Iversen, Elucidating negative thermal expansion in MOF-5. J. Phys. Chem. C 2010, 114, 16181-16186.
[27]
B. Y. Li,; Z. J. Zhang,; Y. Li,; K. X. Yao,; Y. H. Zhu,; Z. Y. Deng,; F. Yang,; X. J. Zhou,; G. H. Li,; H. H. Wu, et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angew. Chem., Int. Ed. 2012, 51, 1412-1415.
[28]
Y. Chen,; H. Wang,; J. Li,; J. V. Lockard, In situ spectroscopy studies of CO2 adsorption in a dually functionalized microporous metal-organic framework. J. Mater. Chem. A 2015, 3, 4945-4953.
[29]
N. C. Burtch,; S. J. Baxter,; J. Heinen,; A. Bird,; A. Schneemann,; D. Dubbeldam,; A. P. Wilkinson, Negative thermal expansion design strategies in a diverse series of metal-organic frameworks. Adv. Funct. Mater. 2019, 29, 1904669.
[30]
R. Luebke,; J. F. Eubank,; A. J. Cairns,; Y. Belmabkhout,; L. Wojtas,; M. Eddaoudi, The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chem. Commun. 2012, 48, 1455-1457.
[31]
J. Bonjour,; J. B. Chalfen,; F. Meunier, Temperature swing adsorption process with indirect cooling and heating. Ind. Eng. Chem. Res. 2002, 41, 5802-5811.
[32]
O. A. Meyer,; T. W. Weber, Nonisothermal adsorption in fixed beds. AIChE J. 1967, 13, 457-465.
[33]
I. Pentchev,; K. Paev,; I. Seikova, Dynamics of non-isothermal adsorption in packed bed of biporous zeolites. Chem. Eng. J. 2002, 85, 245-257.
[34]
V. Dyadkin,; P. Pattison,; V. Dmitriev,; D. Chernyshov, A new multipurpose diffractometer PILATUS@SNBL. J. Synchrotron Rad. 2016, 23, 825-829.
[35]
A. A. Coelho, TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 2018, 51, 210-218.
[36]
G. Sheldrick, SHELXTL, version 6.12; Bruker Analytical X-ray Systems Inc.: Madison, WI, USA, 2001.
[37]
G. M. Sheldrick, SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A Found. Adv. 2015, 71, 3-8.
[38]
G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3-8.
[39]
O. V. Dolomanov,; L. J. Bourhis,; R. J. Gildea,; J. A. K. Howard,; H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
[40]
I. Kochetygov,; S. Bulut,; M. Asgari,; W. L. Queen, Selective CO2 adsorption by a new metal-organic framework: Synergy between open metal sites and a charged imidazolinium backbone. Dalton Trans. 2018, 47, 10527-10535.
[41]
M. J. Cliffe,; A. L. Goodwin, PASCal: A principal axis strain calculator for thermal expansion and compressibility determination. J. Appl. Cryst. 2012, 45, 1321-1329.
[42]
W. L. Queen,; M. R. Hudson,; E. D. Bloch,; J. A. Mason,; M. I. Gonzalez,; J. S. Lee,; D. Gygi,; J. D. Howe,; K. Lee,; T. A. Darwish, et al. Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chem. Sci. 2014, 5, 4569-4581.
[43]
J. D. Evans,; J. P. Dürholt,; S. Kaskel,; R. Schmid, Assessing negative thermal expansion in mesoporous metal-organic frameworks by molecular simulation. J. Mater. Chem. A 2019, 7, 24019-24026.
[44]
G. V. Seguel,; B. L. Rivas,; P. Órdenes, Syntheses and characterizations of copper complexes: Interaction of copper acetate dihydrate with 4,4´-bipyridine. J. Chil. Chem. Soc. 2015, 60, 3080-3082.
[45]
A. L. Smith, Vibrational spectra and assignments for the phenyl chlorosilanes. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 1075-1087.
File
12274_2020_2792_MOESM1_ESM.pdf (8.4 MB)
12274_2020_2792_MOESM2_ESM.zip (7.4 MB)
12274_2020_2792_MOESM3_ESM.zip (9.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 February 2020
Accepted: 01 April 2020
Published: 08 May 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Swiss National Science Foundation under Grant PYAPP2_160581. M. A. acknowledges the Swiss Commission for Technology and Innovation (CTI) (the SCCER EIP-Efficiency of Industrial Processes) for financial support. We also acknowledge the Swiss-Norwegian Beam Line BM01 at European Synchrotron Radiation Facility (ESRF) for the beamtime allocation and Dr. Dmitry Chernyshov, Dr. Iurii Dovgaliuk, Dr. Olga Trukhina and Mr. Vikram Karve for the assistance on the beamline, BM01. M. A. also thanks Dr. Pascal Schouwink for assistance on X-ray diffraction experiments at EPFL Valais.

Return