Journal Home > Volume 13 , Issue 6

The dynamic redox process of surface oxide layers on metal surfaces is of great significance for understanding the active phase in catalytic reactions. We studied the formation of surface oxide layers on Cu(111) and Cu(110) in O2, as well as the subsequent reduction by CO using in situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). By monitoring and comparing the oxidation process of Cu(111) and Cu(110) surfaces, we found a crystal-plane-dependent reaction mechanism, which also applies to the reduction of surface oxide layers on Cu surfaces. We found XPS Cu spectra cannot be used to identify the various surface oxide layer on Cu surfaces, suggesting their presence in catalytic reactions might have been overlooked. The combination of STM and XPS studies are thus advantageous in identifying surface oxide structures and pinpointing the active phases in the redox process, which paves the way for engineering the catalyst and reaction environment for optimized catalytic performances.


menu
Abstract
Full text
Outline
About this article

Crystal-plane-dependent redox reaction on Cu surfaces

Show Author's information Yangsheng Li1,2Hao Chen1,2Weijia Wang3Wugen Huang1,2Yanxiao Ning1Qingfei Liu1,2Yi Cui4Yong Han3Zhi Liu3,5Fan Yang1,3( )Xinhe Bao1
State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

Abstract

The dynamic redox process of surface oxide layers on metal surfaces is of great significance for understanding the active phase in catalytic reactions. We studied the formation of surface oxide layers on Cu(111) and Cu(110) in O2, as well as the subsequent reduction by CO using in situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). By monitoring and comparing the oxidation process of Cu(111) and Cu(110) surfaces, we found a crystal-plane-dependent reaction mechanism, which also applies to the reduction of surface oxide layers on Cu surfaces. We found XPS Cu spectra cannot be used to identify the various surface oxide layer on Cu surfaces, suggesting their presence in catalytic reactions might have been overlooked. The combination of STM and XPS studies are thus advantageous in identifying surface oxide structures and pinpointing the active phases in the redox process, which paves the way for engineering the catalyst and reaction environment for optimized catalytic performances.

Keywords: surface oxide, Cu(111), in situ STM, NAP-XPS, Cu(110)

References(58)

[1]
Tao, F. F.; Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 2011, 331, 171-174.
[2]
Zhang, S. R.; Nguyen, L.; Zhu, Y.; Zhan, S. H.; Tsung, C. K.; Tao, F. F. In-situ studies of nanocatalysis. Acc. Chem. Res. 2013, 46, 1731-1739.
[3]
Lundgren, E.; Zhang, C.; Merte, L. R.; Shipilin, M.; Blomberg, S.; Hejral, U.; Zhou, J. F.; Zetterberg, J.; Gustafson, J. Novel in situ techniques for studies of model catalysts. Acc. Chem. Res. 2017, 50, 2326-2333.
[4]
Vestergaard, E. K.; Vang, R. T.; Knudsen, J.; Pedersen, T. M.; An, T.; Laegsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Adsorbate-induced alloy phase separation: A direct view by high-pressure scanning tunneling microscopy. Phys. Rev. Lett. 2005, 95, 126101.
[5]
Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; Vojvodic, A.; Lauritsen, J. V. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 2017, 8, 14169.
[6]
Xu, F.; Mudiyanselage, K.; Baber, A. E.; Soldemo, M.; Weissenrieder, J.; White, M. G.; Stacchiola, D. J. Redox-mediated reconstruction of copper during carbon monoxide oxidation. J. Phys. Chem. C 2014, 118, 15902-15909.
[7]
Baber, A. E.; Xu, F.; Dvorak, F.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S. D.; Sadowski, J. T.; Rodriguez, J. A.; Matolín, V. et al. In situ imaging of Cu2O under reducing conditions: Formation of metallic fronts by mass transfer. J. Am. Chem. Soc. 2013, 135, 16781-16784.
[8]
Cai, J.; Han, Y.; Chen, S. Y.; Crumlin, E. J.; Yang, B.; Li, Y. M.; Liu, Z. CO2 activation on Ni(111) and Ni(100) surfaces in the presence of H2O: An ambient-pressure X-ray photoelectron spectroscopy study. J. Phys. Chem. C 2019, 123, 12176-12182.
[9]
Starr, D. E.; Liu, Z.; Havecker, M.; Knop-Gericke, A.; Bluhm, H. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 2013, 42, 5833-5857.
[10]
Koitaya, T.; Yamamoto, S.; Matsuda, I.; Yoshinobu, J. Surface chemistry of carbon dioxide on copper model catalysts studied by ambient-pressure X-ray photoelectron spectroscopy. e-J. Surf. Sci. Nanotech. 2019, 17, 169-178.
[11]
Kuld, S.; Conradsen, C.; Moses, P. G.; Chorkendorff, I.; Sehested, J. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew. Chem., Int. Ed. 2014, 53, 5941-5945.
[12]
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893-897.
[13]
Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjaer, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 2016, 352, 969-974.
[14]
Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296-1299.
[15]
Hua, Q.; Cao, T.; Gu, X. K.; Lu, J. Q.; Jiang, Z. Q.; Pan, X. R.; Luo, L. F.; Li, W. X.; Huang, W. X. Crystal-plane-controlled Selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew. Chem., Int. Ed. 2014, 53, 4856-4861.
[16]
Schulz, K. H.; Cox, D. F. Propene oxidation over Cu2O single-crystal surfaces: A surface science study of propene activation at 1 atm and 300 K. J. Catal. 1993, 143, 464-480.
[17]
Greiner, M. T.; Cao, J.; Jones, T. E.; Beeg, S.; Skorupska, K.; Carbonio, E. A.; Sezen, H.; Amati, M.; Gregoratti, L.; Willinger, M. G. et al. Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal. 2018, 8, 2286-2295.
[18]
Yang, X. F.; Kattel, S.; Xiong, K.; Mudiyanselage, K.; Rykov, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G. Direct epoxidation of propylene over stabilized Cu+ surface sites on titanium-modified Cu2O. Angew. Chem., Int. Ed. 2015, 54, 11946-11951.
[19]
Greiner, M. T.; Jones, T. E.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. Ethylene epoxidation at the phase transition of copper oxides. J. Am. Chem. Soc. 2017, 139, 11825-11832.
[20]
An, W.; Baber, A. E.; Xu, F.; Soldemo, M.; Weissenrieder, J.; Stacchiola, D.; Liu, P. Mechanistic study of CO titration on CuxO/Cu(111) (x≤2) surfaces. ChemCatChem 2014, 6, 2364-2372.
[21]
Zhan, W. C.; Wang, J. L.; Wang, H. F.; Zhang, J. S.; Liu, X. F.; Zhang, P. F.; Chi, M. F.; Guo, Y. L.; Guo, Y.; Lu, G. Z. et al. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J. Am. Chem. Soc. 2017, 139, 8846-8854.
[22]
Baber, A. E.; Yang, X. F.; Kim, H. Y.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S. D.; Al-Mahboob, A.; Sadowski, J. T.; Evans, J. et al. Stabilization of catalytically active Cu+ surface sites on titanium-copper mixed-oxide films. Angew. Chem., Int. Ed. 2014, 53, 5336-5340.
[23]
Zhang, Z. H.; Wu, H.; Yu, Z. Y.; Song, R.; Qian, K.; Chen, X. Y.; Tian, J.; Zhang, W. H.; Huang, W. X. Site-resolved Cu2O catalysis in the oxidation of CO. Angew. Chem., Int. Ed. 2019, 58, 4276-4280.
[24]
Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231-7234.
[25]
Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111-119.
[26]
Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329-8336.
[27]
Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624-4633.
[28]
Pierron, E. D.; Rashkin, J. A.; Roth, J. F. Copper oxide on alumina: I. XRD studies of catalyst composition during air oxidation of carbon monoxide. J. Catal. 1967, 9, 38-44.
[29]
Huang, T. J.; Tsai, D. H. CO oxidation behavior of copper and copper oxides. Catal. Lett. 2003, 87, 173-178.
[30]
Pöllmann, S.; Bayer, A.; Ammon, C.; Steinrück, H. P. Adsorption and reaction of methanol on clean and oxygen precovered Cu(111). Z. Phys. Chem. 2004, 218, 957-971.
[31]
Marimuthu, A.; Zhang, J. W.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590-1593.
[32]
Greiner, M. T.; Jones, T. E.; Johnson, B. E.; Rocha, T. C. R.; Wang, Z. J.; Armbruster, M.; Willinger, M.; Knop-Gericke, A.; Schlögl, R. The oxidation of copper catalysts during ethylene epoxidation. Phys. Chem. Chem. Phys. 2015, 17, 25073-25089.
[33]
Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep. 2015, 70, 424-447.
[34]
Coulman, D. J.; Wintterlin, J.; Behm, R. J.; Ertl, G. Novel mechanism for the formation of chemisorption phases: The (2×1)O-Cu(110) “added row” reconstruction. Phys. Rev. Lett. 1990, 64, 1761-1764.
[35]
Feidenhans'l, R.; Grey, F.; Nielsen, M.; Besenbacher, F.; Jensen, F.; Laegsgaard, E.; Stensgaard, I. I.; Jacobsen, K. W.; Nørskov, J. K.; Johnson, R. L. Oxygen chemisorption on Cu(110): A model for the c(6×2) structure. Phys. Rev. Lett. 1990, 65, 2027-2030.
[36]
Matsumoto, T.; Bennett, R. A.; Stone, P.; Yamada, T.; Domen, K.; Bowker, M. Scanning tunneling microscopy studies of oxygen adsorption on Cu(111). Surf. Sci. 2001, 471, 225-245.
[37]
Wiame, F.; Maurice, V.; Marcus, P. Initial stages of oxidation of Cu(111). Surf. Sci. 2007, 601, 1193-1204.
[38]
Liu, Q. Q.; Li, L.; Cai, N.; Saidi, W. A.; Zhou, G. W. Oxygen chemisorption-induced surface phase transitions on Cu(110). Surf. Sci. 2014, 627, 75-84.
[39]
Liu, W.; Wong, K. C.; Mitchell, K. A. R. Structural details for the Cu(110)-c(6 × 2)-O surface determined by tensor LEED. Surf. Sci. 1995, 339, 151-158.
[40]
Yang, F.; Choi, Y.; Liu, P.; Stacchiola, D.; Hrbek, J.; Rodriguez, J. A. Identification of 5-7 defects in a copper oxide surface. J. Am. Chem. Soc. 2011, 133, 11474-11477.
[41]
Hensley, A. J. R.; Therrien, A. J.; Zhang, R. Q.; Marcinkowski, M. D.; Lucci, F. R.; Sykes, E. C. H.; McEwen, J. S. CO adsorption on the “29” CuxO/Cu(111) surface: An integrated DFT, STM, and TPD study. J. Phys. Chem. C 2016, 120, 25387-25394.
[42]
Therrien, A. J.; Zhang, R. Q.; Lucci, F. R.; Marcinkowski, M. D.; Hensley, A.; McEwen, J. S.; Sykes, E. C. H. Structurally accurate model for the “29”-structure of CuxO/Cu(111): A DFT and STM study. J. Phys. Chem. C 2016, 120, 10879-10886.
[43]
Therrien, A. J.; Hensley, A. J. R.; Hannagan, R. T.; Schilling, A. C.; Marcinkowski, M. D.; Larson, A. M.; McEwen, J. S.; Sykes, E. C. H. Surface-templated assembly of molecular methanol on the thin film “29” Cu(111) surface oxide. J. Phys. Chem. C 2019, 123, 2911-2921.
[44]
Yang, F.; Choi, Y.; Liu, P.; Hrbek, J.; Rodriguez, J. A. Autocatalytic reduction of a Cu2O/Cu(111) surface by CO: STM, XPS, and DFT studies. J. Phys. Chem. C 2010, 114, 17042-17050.
[45]
Pérez León, C.; Sürgers, C.; Löhneysen, H. V. Formation of copper oxide surface structures via pulse injection of air onto Cu(111) surfaces. Phys. Rev. B 2012, 85, 035434.
[46]
Niu, T. C.; Jiang, Z.; Zhu, Y. G.; Zhou, G. W.; Van Spronsen, M. A.; Tenney, S. A.; Boscoboinik, J. A.; Stacchiola, D. Oxygen-promoted methane activation on copper. J. Phys. Chem. B 2018, 122, 855-863.
[47]
Russell, J. N.Jr.; Gates, S. M.; Yates, J. T.Jr. Reaction of methanol with Cu(111) and Cu(111) + O(Ads). Surf. Sci. 1985, 163, 516-540.
[48]
Dubois, L. H. Oxygen chemisorption and cuprous oxide formation on Cu(111): A high resolution EELS study. Surf. Sci. 1982, 119, 399-410.
[49]
Niehus, H. Surface reconstruction of Cu (111) upon oxygen adsorption. Surf. Sci. 1983, 130, 41-49.
[50]
Jensen, F.; Besenbacher, F.; Laegsgaard, E.; Stensgaard, I. Surface reconstruction of Cu(110) induced by oxygen chemisorption. Phys. Rev. B 1990, 41, 10233-10236.
[51]
Kuk, Y.; Chua, F. M.; Silverman, P. J.; Meyer, J. A. O chemisorption on Cu(110) by scanning tunneling microscopy. Phys. Rev. B 1990, 41, 12393-12402.
[52]
Coulman, D.; Wintterlin, J.; Barth, J. V.; Ertl, G.; Behm, R. J. An STM investigation of the Cu(110)-c(6 × 2)O system. Surf. Sci. 1990, 240, 151-162.
[53]
Li, L.; Liu, Q. Q.; Li, J.; Saidi, W. A.; Zhou, G. W. Kinetic barriers of the phase transition in the oxygen chemisorbed Cu(110)-(2 × 1)-O as a function of oxygen coverage. J. Phys. Chem. C 2014, 118, 20858-20866.
[54]
Wu, D. X.; Li, J.; Zhou, G. W. Oxygen adsorption at heterophase boundaries of the oxygenated Cu(110). Surf. Sci. 2017, 666, 28-43.
[55]
Tobin, J. P.; Hirschwald, W.; Cunningham, J. XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing. Appl. Surf. Sci. 1983, 16, 441-452.
[56]
Lawton, T. J.; Kyriakou, G.; Baber, A. E.; Sykes, E. C. H. An atomic scale view of methanol reactivity at the Cu(111)/CuOx interface. ChemCatChem 2013, 5, 2684-2690.
[57]
Jernigan, G. G.; Somorjai, G. A. Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, Copper (I) oxide, and Copper (II) Oxide - a surface science and kinetic study. J. Catal. 1994, 147, 567-577.
[58]
Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 2002, 295, 2053-2055.
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 January 2020
Revised: 25 March 2020
Accepted: 04 April 2020
Published: 19 May 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (Nos. 2017YFB0602205 and 2016YFA0202803), and the National Natural Science Foundation of China (Nos. 21972144, 91545204, and 11227902). The authors thank the support from Analytical Instrumentation Center (No. SPST-AIC10112914), SPST, ShanghaiTech University.

Return