Journal Home > Volume 13 , Issue 6

C1q is an important recognition protein in the complement system, which is a major protein cascade in the innate immune system. Upon recognition of a target by C1q, the target is marked for opsonization and destruction. C1q recognizes many pathogenic patterns directly, but an important target is the Fc domain of antibodies binding to their antigen. In this paper, the curvature-dependence of the interaction between IgG and C1q is studied by surface plasmon resonance and quartz crystal microbalance. IgG is organized in similar surface coverage densities on flat polystyrene surfaces and polystyrene nanoparticles of different sizes, and the amount of C1q binding to the IgG is investigated. Nanoparticles in solution were found to aggregate upon incubation with IgG, and therefore a new technique utilizing nanoparticles binding to antifouling polymer brush functionalized surfaces was used to prepare surfaces with nanoparticles for measurements with surface plasmon resonance. Interestingly antigen-bound IgG at the curved surface of nanoparticles showed 5.6 times lower binding of C1q compared to at matched flat surfaces. There was no significant difference between the binding at 100 and 200 nm polystyrene particles. These findings are important for designing drug delivery systems to evade the complement system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

C1q recognizes antigen-bound IgG in a curvature-dependent manner

Show Author's information Christina M. Zeuthen1,4,5Ali Shahrokhtash1,5Karin Fromell2Kristina Nilsson Ekdahl2,3Hossein Mohammad-Beigi1,5Duncan S. Sutherland1,5( )
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark
Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
Linnaeus Center of Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
Sino-Danish Center for Education and Research, Niels Jensens Vej 2, Building 1190, 8000 Aarhus C, Denmark
The Centre for Cellular Signal Patterns (CellPAT), Gustav Wieds vej 14, 8000 Aarhus C, Denmark

Abstract

C1q is an important recognition protein in the complement system, which is a major protein cascade in the innate immune system. Upon recognition of a target by C1q, the target is marked for opsonization and destruction. C1q recognizes many pathogenic patterns directly, but an important target is the Fc domain of antibodies binding to their antigen. In this paper, the curvature-dependence of the interaction between IgG and C1q is studied by surface plasmon resonance and quartz crystal microbalance. IgG is organized in similar surface coverage densities on flat polystyrene surfaces and polystyrene nanoparticles of different sizes, and the amount of C1q binding to the IgG is investigated. Nanoparticles in solution were found to aggregate upon incubation with IgG, and therefore a new technique utilizing nanoparticles binding to antifouling polymer brush functionalized surfaces was used to prepare surfaces with nanoparticles for measurements with surface plasmon resonance. Interestingly antigen-bound IgG at the curved surface of nanoparticles showed 5.6 times lower binding of C1q compared to at matched flat surfaces. There was no significant difference between the binding at 100 and 200 nm polystyrene particles. These findings are important for designing drug delivery systems to evade the complement system.

Keywords: nanoparticles, antibodies, C1q, complement system, curvature

References(37)

[1]
Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469-478.
[2]
Dobrovolskaia, M. A.; Aggarwal, P.; Hall, J. B.; Mcneil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharmaceutics 2008, 5, 487-495.
[3]
Moghimi, S. M.; Simberg, D. Complement activation turnover on surfaces of nanoparticles. Nano Today 2017, 15, 8-10.
[4]
Ugurlar, D.; Howes, S. C.; de Kreuk, B. J.; Koning, R. I.; De Jong, R. N.; Beurskens, F. J.; Schuurman, J.; Koster, A. J.; Sharp, T. H. et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 2018, 359, 794-797.
[5]
Galvan, M. D.; Greenlee-Wacker, M. C.; Bohlson, S. S. C1q and phagocytosis: The perfect complement to a good meal. J. Leukoc. Biol. 2012, 92, 489-497.
[6]
Schneider, S.; Zacharias, M. Atomic resolution model of the antibody Fc interaction with the complement C1q component. Mol. Immunol. 2012, 51, 66-72.
[7]
NayaK, A.; Pednekar, L.; Reid, K. B.; Kishore, U. Complement and non-complement activating functions of C1q: A prototypical innate immune molecule. Innate Immun. 2012, 18, 350-363.
[8]
Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J. D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785-797.
[9]
Sim, R. B.; Wallis, R. Immune attack on nanoparticles. Nat. Nanotechnol. 2011, 6, 80-81.
[10]
Gaboriaud, C.; Juanhuix, J.; Gruez, A.; Lacroix, M.; Darnault, C.; Pignol, D.; Verger, D.; Fontecilla-Camps, J. C.; Arlaud, G. J. The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. J. Biol. Chem. 2003, 278, 46974-46982.
[11]
Lee, C. H.; Romain, G.; Yan, W. P.; Watanabe, M.; Charab, W.; Todorova, B.; Lee, J.; Triplett, K.; Donkor, M.; Lungu, O. I. et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat. Immunol. 2017, 18, 889-898.
[12]
Diebolder, C. A.; Beurskens, F. J.; de Jong, R. N.; Koning, R. I.; Strumane, K.; Lindorfer, M. A.; Voorhorst, M.; Ugurlar, D.; Rosati, S.; Heck, A. J. R. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014, 343, 1260-1263.
[13]
Gaboriaud, C.; Thielens, N. M.; Gregory, L. A.; Rossi, V.; Fontecilla-Camps, J. C.; Arlaud, G. J. Structure and activation of the C1 complex of complement: Unraveling the puzzle. Trends Immunol. 2004, 25, 368-373.
[14]
Gadjeva, M. G.; Rouseva, M. M.; Zlatarova, A. S.; Reid, K. B. M.; Kishore, U.; Kojouharova, M. S. Interaction of human C1q with IgG and IgM: Revisited. Biochemistry 2008, 47, 13093-13102.
[15]
Boraschi, D.; Italiani, P.; Palomba, R.; Decuzzi, P.; Duschl, A.; Fadeel, B.; Moghimi, S. M. Nanoparticles and innate immunity: New perspectives on host defence. Semin. Immunol. 2017, 34, 33-51.
[16]
Strasser, J.; de Jong, R. N.; Beurskens, F. J.; Schuurman, J.; Parren, P. W. H. I.; Hinterdorfer, P.; Preiner, J. Weak fragment crystallizable (Fc) domain interactions drive the dynamic assembly of IgG oligomers upon antigen recognition. ACS Nano 2020, 14, 2739-2750
[17]
Strasser, J.; de Jong, R. N.; Beurskens, F. J.; Wang, G. B.; Heck, A. J. R.; Schuurman, J.; Parren, P. W. H. I.; Hinterdorfer, P.; Preiner, J. Unraveling the macromolecular pathways of IgG oligomerization and complement activation on antigenic surfaces. Nano Lett. 2019, 19, 4787-4796.
[18]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, L.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265-14270.
[19]
Pedersen, M. B.; Zhou, X. F.; Larsen, E. K. U.; Sørensen, U. S.; Kjems, J.; Nygaard, J. V.; Nyengaard, J. R.; Meyer, R. L.; Boesen, T.; Vorup-Jensen, T. Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J. Immunol. 2010, 184, 1931-1945.
[20]
Hulander, M.; Lundgren, A.; Berglin, M.; Ohrlander, M.; Lausmaa, J.; Elwing, H. Immune complement activation is attenuated by surface nanotopography. Int. J. Nanomedicine 2011, 6, 2653-2666.
[21]
Westas Janco, E.; Hulander, M.; Andersson, M. Curvature-dependent effects of nanotopography on classical immune complement activation. Acta Biomaterialia 2018, 74, 112-120.
[22]
Zeuthen, C. M.; Shahrokhtash, A.; Sutherland, D. S. Nanoparticle adsorption on antifouling polymer brushes. Langmuir 2019, 35, 14879-14889.
[23]
Vogt, B. D.; Lin, E. K.; Wu, W. I.; White, C. C. Effect of film thickness on the validity of the sauerbrey equation for hydrated polyelectrolyte films. J. Phys. Chem. B 2004, 108, 12685-12690.
[24]
Konradi, R.; Textor, M.; Reimhult, E. Using complementary acoustic and optical techniques for quantitative monitoring of biomolecular adsorption at interfaces. Biosensors 2012, 2, 341-376.
[25]
Voinova, M. V; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys. Scr. 1999, 59, 391-396.
[26]
Ouberai, M. M.; Xu, K. R.; Welland, M. E. Effect of the interplay between protein and surface on the properties of adsorbed protein layers. Biomaterials 2014, 35, 6157-6163.
[27]
Reviakine, I.; Johannsmann, D.; Richter, R. P. Hearing what you cannot see and visualizing what you hear: Interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 2011, 83, 8838-8848.
[28]
Reimhult, E.; Larsson, C.; Kasemo, B.; Höök, F. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal. Chem. 2004, 76, 7211-7220.
[29]
Malmström, J.; Agheli, H.; Kingshott, P.; Sutherland, D. S. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: Quantification of protein layer properties using QCM-D and SPR. Langmuir 2007, 23, 9760-9768.
[30]
Aisen, P.; Listowsky, I. Iron transport and storage proteins. Annu. Rev. Biochem. 1980, 49, 357-393.
[31]
Adamczyk, Z.; Siwek, B.; Zembala, M.; Belouschek, P. Kinetics of localized adsorption of colloid particles. Adv. Colloid Interface Sci. 1994, 48, 151-280.
[32]
Tan, Y. H.; Liu, M. Z.; Nolting, B.; Go, J. G.; Gervay-Hague, J.; Liu, G. Y. A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano 2008, 2, 2374-2384.
[33]
Strang, C. J.; Siegel, R. C.; Phillips, M. L.; Poon, P. H.; Schumaker, V. N. Ultrastructure of the first component of human complement: Electron microscopy of the crosslinked complex. Proc. Natl. Acad. Sci. USA 1982, 79, 586-590.
[34]
Mortensen, S. A.; Sander, B.; Jensen, R. K.; Pedersen, J. S.; Golas, M. M.; Jensenius, J. C.; Hansen, A. G.; Thiel, S.; Andersen, G. R. Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc. Natl. Acad. Sci. USA 2017, 114, 986-991.
[35]
Larsson, C.; Rodahl, M.; Höök, F. Characterization of DNA Immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal. Chem. 2003, 75, 5080-5087.
[36]
Saptarshi, S. R.; Duschl, A.; Lopata, A. L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J. Nanobiotechnology 2013, 11, 26.
[37]
Tenner, A. J.; Lesavre, P. H.; Cooper, N. R. Purification and radiolabeling of human C1q. J. Immunol. 1981, 127, 648-653.
File
12274_2020_2788_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 February 2020
Revised: 01 April 2020
Accepted: 03 April 2020
Published: 07 May 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We kindly acknowledge Folmer Lyckegaard and Jacques Chevallier for sputter-coating the SPR chips and Bo Nilsson for valuable discussions. This work acknowledges funding from the FNU project DFF-4181-00473, the Danish National Research Foundation center grant CellPAT (DNRF135), Sino-Danish Centre for Education and Research and the European Community’s Seventh Framework Programme under grant agreement No. 602699 (DIREKT)

Return