Journal Home > Volume 13 , Issue 6

Atomic layer deposition (ALD) can be used for wafer-scale synthesis of 2D materials. In this paper, a novel, reliable, secure, low-cost, and high-efficiency process for the fabrication of MoS2 is introduced and investigated. The resulting 2D materials show high carrier-mobility as well as excellent electrical uniformity. Using molybdenum pentachloride (MoCl5) and hexamethyldisilathiane (HMDST) as ALD precursors, thickness-controlled MoS2 films are uniformly deposited on a 50 mm sapphire and a 100 mm silica substrate. This is done with a high growth-rate (up to 0.90 Å/cycle). Large-scale top-gated FET arrays are fabricated using the films, with a room-temperature mobility of 0.56 cm2/(V·s) and a high on/off current ratio of 106. Excellent electrical uniformity is observed in the whole sapphire wafer. Additionally, logical circuits, including inverters, NAND, AND, NOR, and OR gates, are realized successfully with a high-k HfO2 dielectric layer. Our inverters exhibit a fast response frequency of 50 Hz and a DC-voltage gain of 4 at VDD = 4 V. These results indicate that the new method has the potential to synthesize high quality MoS2 films on a large-scale, with hypo-toxicity and enhanced efficiency, which can facilitate a broader range of applications in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit

Show Author's information Hao LiuLin Chen( )Hao ZhuQing-Qing Sun( )Shi-Jin DingPeng ZhouDavid Wei Zhang
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China

Abstract

Atomic layer deposition (ALD) can be used for wafer-scale synthesis of 2D materials. In this paper, a novel, reliable, secure, low-cost, and high-efficiency process for the fabrication of MoS2 is introduced and investigated. The resulting 2D materials show high carrier-mobility as well as excellent electrical uniformity. Using molybdenum pentachloride (MoCl5) and hexamethyldisilathiane (HMDST) as ALD precursors, thickness-controlled MoS2 films are uniformly deposited on a 50 mm sapphire and a 100 mm silica substrate. This is done with a high growth-rate (up to 0.90 Å/cycle). Large-scale top-gated FET arrays are fabricated using the films, with a room-temperature mobility of 0.56 cm2/(V·s) and a high on/off current ratio of 106. Excellent electrical uniformity is observed in the whole sapphire wafer. Additionally, logical circuits, including inverters, NAND, AND, NOR, and OR gates, are realized successfully with a high-k HfO2 dielectric layer. Our inverters exhibit a fast response frequency of 50 Hz and a DC-voltage gain of 4 at VDD = 4 V. These results indicate that the new method has the potential to synthesize high quality MoS2 films on a large-scale, with hypo-toxicity and enhanced efficiency, which can facilitate a broader range of applications in the future.

Keywords: molybdenum disulfide, atomic layer deposition, field effect transistors, electrical uniformity, logical circuits

References(35)

[1]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[2]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[3]
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
[4]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[5]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[6]
Lin, K. I.; Chen, Y. J.; Wang, B. Y.; Cheng, Y. C.; Chen, C. H. Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS2 films. J. Appl. Phys. 2016, 119, 115703.
[7]
Wang, Z. W.; He, X.; Zhang, X. X.; Alshareef, H. N. Hybrid van der Waals p-n heterojunctions based on SnO and 2D MoS2. Adv. Mater. 2016, 28, 9133-9141.
[8]
Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421-425.
[9]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[10]
Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano. Lett. 2013, 13, 1852-1857.
[11]
Liu, H. F.; Wong, S. L.; Chi, D. Z. CVD growth of MoS2-based two-dimensional materials. Chem. Vapor Deposit. 2015, 21, 241-259.
[12]
Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Neto, A. H. C.; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano. Lett. 2014, 14, 1909-1913.
[13]
Yu, L.; El-Damak, D.; Ha, S.; Ling, X.; Lin, Y.; Zubair, A.; Zhang, Y.; Lee, Y. H.; Kong, J.; Chandrakasan, A. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In Proceedings of 2015 IEEE International Electron Devices Meeting, Washington, 2015, pp 32.3.1-32.3.4.
[14]
Venables, J. A.; Spiller, G. D. T. Nucleation and growth of thin films. In Surface Mobilities on Solid Materials. Binh, W. T., Ed.; Springer: Boston, 1983; pp 341-404.
[15]
Pyeon, J. J.; Kim, S. H.; Jeong, D. S.; Baek, S. H.; Kang, C. Y.; Kim, J. S.; Kim, S. K. Wafer-scale growth of MoS2 thin films by atomic layer deposition. Nanoscale 2016, 8, 10792-10798.
[16]
Tan, L. K.; Liu, B.; Teng, J. H.; Guo, S. F.; Low, H. Y.; Loh, K. P. Atomic layer deposition of a MoS2 film. Nanoscale 2014, 6, 10584-10588.
[17]
Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.
[18]
Zhang, T. B.; Wang, Y.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhang, D. W. High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2D Mater. 2017, 5, 015028.
[19]
Shi, M. L.; Chen, L.; Zhang, T. B.; Xu, J.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 2017, 13, 1603157.
[20]
Jeon, W.; Cho, Y.; Jo, S.; Ahn, J. H.; Jeong, S. J. Wafer-scale synthesis of reliable high-mobility molybdenum disulfide thin films via inhibitor-utilizing atomic layer deposition. Adv. Mater. 2017, 29, 1703031.
[21]
Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[22]
Carmalt, C. J.; Dinnage, C. W.; Parkin, I. P.; Peters, E. S.; Molloy, K.; Colucci, M. A. The use of hexamethyldisilathiane for the synthesis of transition metal sulfides. Polyhedron 2003, 22, 1255-1262.
[23]
Cao, Q.; Dai, Y. W.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Realizing stable p-type transporting in two-dimensional WS2 films. ACS Appl. Mater. Interfaces 2017, 9, 18215-18221.
[24]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano. Lett. 2011, 11, 5111-5116.
[25]
Kim, Y.; Bark, H.; Ryu, G. H.; Lee, Z.; Lee, C. Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2S. J. Phys.: Cond. Matter 2016, 28, 184002.
[26]
Wu, D. Z.; Zhang, Z. Y.; Lv, D. H.; Yin, G. L.; Peng, Z. J.; Jin, C. H. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2. Mater. Express 2016, 6, 198-204.
[27]
Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179-184.
[28]
Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858-862.
[29]
Wachter, S.; Polyushkin, D. K.; Bethge, O.; Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948.
[30]
Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[31]
Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.
[32]
Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954-959.
[33]
Yu, L. L.; El-Damak, D.; Radhakrishna, U.; Ling, X.; Zubair, A.; Lin, Y. X.; Zhang, Y. H.; Chuang, M. H.; Lee, Y. H.; Antoniadis, D. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano. Lett. 2016, 16, 6349-6356.
[34]
Wang, L.; Chen, L.; Wong, S. L.; Huang, X.; Liao, W. G.; Zhu, C. X.; Lim, Y. F.; Li, D. B.; Liu, X. K.; Chi, D. Z. et al. Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition. Adv. Electron. Mater. 2019, 5, 1900393.
[35]
Zhang, T. B.; Liu, H.; Wang, Y.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900018.
File
12274_2020_2787_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 February 2020
Revised: 24 March 2020
Accepted: 01 April 2020
Published: 23 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Foundation of China (NSFC) (Nos. 61704030 and 61522404), Shanghai Rising-Star Program (No.19QA1400600), the Program of Shanghai Subject Chief Scientist (No.18XD1402800), and the Support Plans for the Youth Top-Notch Talents of China.

Return