Journal Home > Volume 14 , Issue 2

Two novel anionic single-walled metal-organic nanotubes (MONTs), [(CH3)2NH2][In(cdc)(thb)]·2DMF·9.5H2O (FJU-105) and [(CH3)2NH2][In(cdc)(H-btc)]·2DMA·11H2O (FJU-106) (H2cdc = 9H-carbazole-3,6-dicarboxylic acid, H2thb = 2,5-thiophene dicarboxylic acid, H3btc = 1,3,5-benzene tricarboxylic acid), are achieved by employing [In6(cdc)6]6+ metalloring cluster with largest diameter as the secondary building blocks (SBUs). The inner surface of FJU-106 is functionalized by uncoordinated -COOH groups of the H-btc linkers, leading to a higher proton conduction than FJU-105. At 70 °C, FJU-106 displays the proton conduction performances among MONTs, up to 1.80 × 10-2 S·cm-1. And FJU-105 and FJU-106 are the first examples of MONT proton conductors operating at subzero temperature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High proton conductivity in metalloring-cluster based metal-organic nanotubes

Show Author's information Quanjie Lin1Yingxiang Ye1Lizhen Liu1Zizhu Yao1Ziyin Li1Lihua Wang1Chulong Liu1,( )Zhangjing Zhang1,2,( )Shengchang Xiang1,2,( )
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Abstract

Two novel anionic single-walled metal-organic nanotubes (MONTs), [(CH3)2NH2][In(cdc)(thb)]·2DMF·9.5H2O (FJU-105) and [(CH3)2NH2][In(cdc)(H-btc)]·2DMA·11H2O (FJU-106) (H2cdc = 9H-carbazole-3,6-dicarboxylic acid, H2thb = 2,5-thiophene dicarboxylic acid, H3btc = 1,3,5-benzene tricarboxylic acid), are achieved by employing [In6(cdc)6]6+ metalloring cluster with largest diameter as the secondary building blocks (SBUs). The inner surface of FJU-106 is functionalized by uncoordinated -COOH groups of the H-btc linkers, leading to a higher proton conduction than FJU-105. At 70 °C, FJU-106 displays the proton conduction performances among MONTs, up to 1.80 × 10-2 S·cm-1. And FJU-105 and FJU-106 are the first examples of MONT proton conductors operating at subzero temperature.

Keywords: metal-organic nanotubes, macrocyclic, metalloring cluster, inner-surface functionalization, proton-conductivity

References(47)

[1]
M. F. L. De Volder,; S. H. Tawfick,; R. H. Baughman,; A. J. Hart, Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535-539.
[2]
A. W. Barnard,; M. Zhang,; G. S. Wiederhecker,; M. Lipson,; P. L. McEuen, Real-time vibrations of a carbon nanotube. Nature 2019, 566, 89-93.
[3]
A. Siria,; P. Poncharal,; A. L. Biance,; R. Fulcrand,; X. Blase,; S. T. Purcell,; L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455-458.
[4]
H. Li,; L. B. Li,; R. B. Lin,; W. Zhou,; Z. J. Zhang,; S. C. Xiang,; B. L. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006-100045.
[5]
M. Aoyagi,; K. Biradha,; M. Fujita, Quantitative formation of coordination nanotubes templated by rodlike guests. J. Am. Chem. Soc. 1999, 121, 7457-7458.
[6]
G. W. Orr,; L. J. Barbour,; J. L. Atwood, Controlling molecular self-organization: Formation of nanometer-scale spheres and tubules. Science 1999, 285, 1049-1052.
[7]
G. Q. Kong,; S. Ou,; C. Zou,; C. D. Wu, Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J. Am. Chem. Soc. 2012, 134, 19851-19857.
[8]
Z. Z. Lu,; R. Zhang,; Y. Z. Li,; Z. J. Guo,; H. G. Zheng, Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. J. Am. Chem. Soc. 2011, 133, 4172-4174.
[9]
X. G. Liu,; S. S. Bao,; J. Huang,; K. Otsubo,; J. S. Feng,; M. Ren,; F. C. Hu,; Z. H. Sun,; L. M. Zheng,; S. Q. Wei, et al. Homochiral metal phosphonate nanotubes. Chem. Commun. 2015, 51, 15141-15144.
[10]
Z. Zhou,; C. He,; J. H. Xiu,; L. Yang,; C. Y. Duan, Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 2015, 137, 15066-15069.
[11]
J. G. Jia,; J. S. Feng,; X. D. Huang,; S. S. Bao,; L. M. Zheng, Homochiral iron(II)-based metal-organic nanotubes: Metamagnetism and selective nitric oxide adsorption in a confined channel. Chem. Commun. 2019, 55, 2825-2828.
[12]
Y. Zhou,; S. Yao,; Y. L. Ma,; G. H. Li,; Q. S. Huo,; Y. L. Liu, An anionic single-walled metal-organic nanotube with an armchair (3, 3) topology as an extremely smart adsorbent for the effective and selective adsorption of cationic carcinogenic dyes. Chem. Commun. 2018, 54, 3006-3009.
[13]
J. G. Jia,; L. M. Zheng, Metal-organic nanotubes: Designs, structures and functions. Coord. Chem. Rev. 2020, 403, 213083.
[14]
P. Thanasekaran,; T. T. Luo,; C. H. Lee,; K. L. Lu, A journey in search of single-walled metal-organic nanotubes. J. Mater. Chem. 2011, 21, 13140-13149.
[15]
D. K. Unruh,; K. Gojdas,; A. Libo,; T. Z. Forbes, Development of metal-organic nanotubes exhibiting low-temperature, reversible exchange of confined “ice channels”. J. Am. Chem. Soc. 2013, 135, 7398-7401.
[16]
X. Wu,; Z. X. Xu,; F. Wang,; J. Zhang, Catenation of homochiral metal-organic nanocages or nanotubes. Inorg. Chem. 2016, 55, 5095-5097.
[17]
S. Lee,; E. A. Kapustin,; O. M. Yaghi, Coordinative alignment of molecules in chiral metal-organic frameworks. Science 2016, 353, 808-811.
[18]
M. Dan-Hardi,; C. Serre,; T. Frot,; L. Rozes,; G. Maurin,; C. Sanchez,; G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857-10859.
[19]
K. Sumida,; M. R. Hill,; S. Horike,; A. Dailly,; J. R. Long, Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J. Am. Chem. Soc. 2009, 131, 15120-15121.
[20]
T. Ahnfeldt,; N. Guillou,; D. Gunzelmann,; I. Margiolaki,; T. Loiseau,; G. Férey,; J. Senker,; N. Stock, [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅xH2O: A 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew. Chem., Int. Ed. 2009, 48, 5163-5166.
[21]
D. X. Fu,; A. Libson,; L. J. W. Miercke,; C. Weitzman,; P. Nollert,; J. Krucinski,; R. M. Stroud, Structure of a glycerol-conducting channel and the basis for its selectivity. Science 2000, 290, 481-486.
[22]
H. X. Sui,; B. G. Han,; J. K. Lee,; P. Walian,; B. K. Jap, Structural basis of water-specific transport through the AQP1 water channel. Nature 2001, 414, 872-878.
[23]
T. Panda,; T. Kundu,; R. Banerjee, Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction. Chem. Commun. 2012, 48, 5464-5466.
[24]
G. J. Cao,; J. D. Liu,; T. T. Zhuang,; X. H. Cai,; S. T. Zheng, A polyoxometalate-organic supramolecular nanotube with high chemical stability and proton-conducting properties. Chem. Commun. 2015, 51, 2048-2051.
[25]
K. Otake,; K. Otsubo,; K. Sugimoto,; A. Fujiwara,; H. Kitagawa, Ultrafine metal-organic right square prism shaped nanowires. Angew. Chem., Int. Ed. 2016, 55, 6448-6451.
[26]
X. M. Li,; J. Liu,; C. Zhao,; J. L. Zhou,; L. Zhao,; S. L. Li,; Y. Q. Lan, Strategic hierarchical improvement of superprotonic conductivity in a stable metal-organic framework system. J. Mater. Chem. A 2019, 7, 25165-25171.
[27]
D. W. Lim,; M. Sadakiyo,; H. Kitagawa, Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci. 2019, 10, 16-33.
[28]
H. N. Wang,; X. Meng,; L. Z. Dong,; Y. F. Chen,; S. L. Li,; Y. Q. Lan, Coordination polymer-based conductive materials: Ionic conductivity vs. Electronic conductivity. J. Mater. Chem. A 2019, 7, 24059-24091.
[29]
Z. Z. Yao,; L. Pan,; L. Z. Liu,; J. D. Zhang,; Q. J. Lin,; Y. X. Ye,; Z. J. Zhang,; S. C. Xiang,; B. L. Chen, Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 2019, 5, eaaw4515.
[30]
Y. X. Ye,; W. G. Guo,; L. H. Wang,; Z. Y. Li,; Z. J. Song,; J. Chen,; Z. J. Zhang,; S. C. Xiang,; B. L. Chen, Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604-15607.
[31]
S. S. Liu,; Z. Han,; J. S. Yang,; S. Z. Huang,; X. Y. Dong,; S. Q. Zang, Sulfonic groups lined along channels of metal-organic frameworks (MOFs) for super-proton conductor. Inorg. Chem. 2020, 59, 396-402.
[32]
Y. S. Wei,; X. P. Hu,; Z. Han,; X. Y. Dong,; S. Q. Zang,; T. C. W. Mak, Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 2017, 139, 3505-3512.
[33]
S. Chand,; S. M. Elahi,; A. Pal,; M. C. Das, Metal-organic frameworks and other crystalline materials for ultrahigh superprotonic conductivities of 10-2 S cm-1 or higher. Chem.—Eur. J. 2019, 25, 6259-6269.
[34]
S. Chand,; S. C. Pal,; A. Pal,; Y. X. Ye,; Q. J. Lin,; Z. J. Zhang,; S. C. Xiang,; M. C. Das, Metalo hydrogen-bonded organic frameworks (MHOFs) as new class of crystalline materials for protonic conduction. Chem.—Eur. J. 2019, 25, 1691-1695.
[35]
X. J. Li,; X. F. Sun,; X. X. Li,; Z. H. Fu,; Y. Q. Su,; G. Xu, Porous cadmium(II) anionic metal-organic frameworks based on aromatic tricarboxylate ligands: Encapsulation of protonated flexible bis(2- methylimidazolyl) ligands and proton conductivity. Cryst. Growth Des. 2015, 15, 4543-4548.
[36]
S. M. Elahi,; S. Chand,; W. H. Deng,; A. Pal,; M. C. Das, Polycarboxylate-templated coordination polymers: Role of templates for superprotonic conductivities of up to 10-1 S cm-1. Angew. Chem., Int. Ed. 2018, 57, 6662-6666.
[37]
H. Zhong,; Z. H. Fu,; J. M. Taylor,; G. Xu,; R. H. Wang, Inorganic acid-impregnated covalent organic gels as high-performance proton-conductive materials at subzero temperatures. Adv. Funct. Mater. 2017, 27, 1701465.
[38]
V. A. Blatov,; A. P. Shevchenko,; V. N. Serezhkin, TOPOS3.2: A new version of the program package for multipurpose crystal-chemical analysis. J. Appl. Cryst. 2000, 33, 1193.
[39]
F. Ragon,; B. Campo,; Q. Y. Yang,; C. Martineau,; A. D. Wiersum,; A. Lago,; V. Guillerm,; C. Hemsley,; J. F. Eubank,; M. Vishnuvarthan, et al. Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties. J. Mater. Chem. A 2015, 3, 3294-3309.
[40]
S. S. Nagarkar,; S. M. Unni,; A. Sharma,; S. Kurungot,; S. K. Ghosh, Two-in-one: Inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Angew. Chem., Int. Ed. 2014, 53, 2638-2642.
[41]
T. Panda,; T. Kundu,; R. Banerjee, Structural isomerism leading to variable proton conductivity in indium(III) isophthalic acid based frameworks. Chem. Commun. 2013, 49, 6197-6199.
[42]
Y. H. Han,; Y. X. Ye,; C. B. Tian,; Z. J. Zhang,; S. W. Du,; S. C. Xiang, High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. J. Mater. Chem. A 2016, 4, 18742-18746.
[43]
T. Yamada,; M. Sadakiyo,; H. Kitagawa, High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 2009, 131, 3144-3145.
[44]
N. T. T. Nguyen,; H. Furukawa,; F. Gándara,; C. A. Trickett,; H. M. Jeong,; K. E. Cordova,; O. M. Yaghi, Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 2015, 137, 15394-15397.
[45]
L. Z. Liu,; Z. Z. Yao,; Y. X. Ye,; Q. J. Lin,; S. M. Chen,; Z. J. Zhang,; S. C. Xiang, Enhanced intrinsic proton conductivity of metal-organic frameworks by tuning the degree of interpenetration. Cryst. Growth Des. 2018, 18, 3724-3728.
[46]
Y. Sone,; P. Ekdunge,; D. Simonsson, Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J. Electrochem. Soc. 1996, 143, 1254-1259.
[47]
R. C. T. Slade,; A. Hardwick,; P. G. Dickens, Investigation of H+ motion in NAFION film by pulsed 1H NMR and A.C. conductivity measurements. Solid State Ionics 1983, 9-10, 1093-1098.
File
12274_2020_2785_MOESM1_ESM.pdf (1.8 MB)
12274_2020_2785_MOESM2_ESM.pdf (190 KB)
12274_2020_2785_MOESM3_ESM.pdf (256.3 KB)
12274_2020_2785_MOESM4_ESM.cif (2.2 MB)
12274_2020_2785_MOESM5_ESM.cif (779.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2020
Revised: 29 March 2020
Accepted: 01 April 2020
Published: 22 April 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21673039, 21573042, 21805039, 21975044 and 21971038) and the Fujian Provincial Department of Science and Technology (Nos. 2018J07001 and 2019H6012)

Return