Journal Home > Volume 13 , Issue 7

Rechargeable sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage owing to their excellent high-power performance. However, Al-based current collectorsat both anodes and cathodes of SIBs, which widely influence the power properties of a variety of electrodes in SIBs, have rarely been investigated. Here, we demonstrate that vertical graphene nanosheets grown on commercial Al foil by the plasma-enhanced chemical vapor deposition (PECVD) method, form a robust connection with the carbon-based conductive network of the electrode, thereby significantly reducing the electrode-current collector interfacial resistance. For sodium vanadium phosphate (NVP) anodes with vertical graphenenanosheetmodified Al foil (G-Al) current collectors, the interfacial resistance between the electrode and current collector is reduced 20-fold compared with that in the case of Al foil. The G-Al current collector reduces the polarization and improves the rate capability compared with that of Al current collectors within both cathodes and anodes of SIBs. At a high rate of 5 C, the capacity retention of NVP cathode with G-Al current collector is 74%, which is much higher than that with Al foil (22%).We believe that the obtained results support the prospect for the widespread use of G-Al current collectors in the further improvement of high-power profiles of SIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries

Show Author's information Kexin Wang1Chongzhen Wang1Hao Yang2Xiongbiao Wang3Feng Cao3Qinci Wu1Hailin Peng1,3( )
Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Beijing Graphene Institute (BGI), Beijing 100094, China

Abstract

Rechargeable sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage owing to their excellent high-power performance. However, Al-based current collectorsat both anodes and cathodes of SIBs, which widely influence the power properties of a variety of electrodes in SIBs, have rarely been investigated. Here, we demonstrate that vertical graphene nanosheets grown on commercial Al foil by the plasma-enhanced chemical vapor deposition (PECVD) method, form a robust connection with the carbon-based conductive network of the electrode, thereby significantly reducing the electrode-current collector interfacial resistance. For sodium vanadium phosphate (NVP) anodes with vertical graphenenanosheetmodified Al foil (G-Al) current collectors, the interfacial resistance between the electrode and current collector is reduced 20-fold compared with that in the case of Al foil. The G-Al current collector reduces the polarization and improves the rate capability compared with that of Al current collectors within both cathodes and anodes of SIBs. At a high rate of 5 C, the capacity retention of NVP cathode with G-Al current collector is 74%, which is much higher than that with Al foil (22%).We believe that the obtained results support the prospect for the widespread use of G-Al current collectors in the further improvement of high-power profiles of SIBs.

Keywords: sodium-ion batteries, current collector, vertical graphene nanosheets, interfacial resistance

References(40)

[1]
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
[2]
Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053-1061.
[3]
Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688.
[4]
Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R. Y.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R. An overview and future perspectives of aluminum batteries. Adv. Mater. 2016, 28, 7564-7579.
[5]
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.
[6]
Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431-3448.
[7]
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.
[8]
Liu, T. F.; Zhang, Y. P.; Jiang, Z. G.; Zeng, X. Q.; Ji, J. P.; Li, Z. H.; Gao, X. H.; Sun, M. H.; Lin, Z.; Ling, M. et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ.Sci. 2019, 12, 1512-1533.
[9]
Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859-3867.
[10]
Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007-15028.
[11]
Sathiya, M.; Hemalatha, K.; Ramesha, K.; Tarascon, J. M.; Prakash, A. S. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 2012, 24, 1846-1853.
[12]
Zhao, C. L; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Ni-based cathode materials for Na-ion batteries. Nano Res. 2019, 12, 2018-2030.
[13]
Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572-8583.
[14]
Wu, H. C.; Lin, Y. P.; Lee, E.; Lin, W. T.; Hu, J. K.; Chen, H. C.; Wu, N. L. High-performance carbon-based supercapacitors using Al current-collector with conformal carbon coating. Mater. Chem. Phys. 2009, 117, 294-300.
[15]
Arai, Y.; Kunisawa, M.; Yamaguchi, T.; Yokouchi, H.; Matsuo, A.; Ohmori, M. Studies of SDX on the boundary resistance between aluminum current collectors and cathode active material layers. ECS Trans. 2013, 50, 153-160.
[16]
Jiang, J. M.; Nie, P.; Ding, B.; Wu, W. X.; Chang, Z.; Wu, Y. T.; Dou, H.; Zhang, X. G. Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 30926-30932.
[17]
Wen, L.; Liang, J.; Liu, C. M.; Chen, J.; Huang, Q. G.; Luo, H. Z.; Li, F. Li4Ti5O12 on graphene for high rate lithium ion batteries. J. Electrochem. Soc. 2016, 163, A2951-A2955.
[18]
Takeda, A.; Nakamura, T.; Yokouchi, H.; Tomozawa, H. The mechanism of decreasing resistance by SDXTM in lithium ion battery. ECS Trans. 2017, 75, 17-25.
[19]
Portet, C.; Taberna, P. L.; Simon, P.; Laberty-Robert, C. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 2004, 49, 905-912.
[20]
Lecoeur, C.; Tarascon, J. M.; Guery, C. Al current collectors for Li-ion batteries made via an oxidation process in ionic liquids. Electrochem. Solid State Lett. 2010, 14, A6-A9.
[21]
Wu, H. C.; Lee, E.; Wu, N. L.; Jow, T. R. Effects of current collectors on power performance of Li4Ti5O12 anode for Li-ion battery. J. Power Sources 2012, 197, 301-304.
[22]
He, H. W.; Zhou, H. S.; Pan, D. Y. Application of chemical etched aluminum foil collector in supercapacitor. Battery Bimon. 2014, 44, 31-33.
[23]
Striebel, K.; Shim, J.; Sierra, A.; Yang, H.; Song, X. Y.; Kostecki, R.; McCarthy, K. The development of low cost LiFePO4-based high power lithium-ion batteries. J. Power Sources 2005, 146, 33-38.
[24]
Bo, Z.; Zhu, W. G.; Ma, W.; Wen, Z. H.; Shuai, X. R.; Chen, J. H.; Yan, J. H.; Wang, Z. H.; Cen, K. F.; Feng, X. L. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 2013, 25, 5799-5806.
[25]
Liu, X. F.; Wang, D.; Zhang, B. S.; Luan, C.; Qin, T. T.; Zhang, W.; Wang, D.; Shi, X. Y.; Deng, T.; Zheng, W. T. Vertical graphene nanowalls coating of copper current collector for enhancing rate performance of graphite anode of Li ion battery: The merit of optimized interface architecture. Electrochim. Acta 2018, 268, 234-240.
[26]
Zhang, D. H.; Wu, Y. L.; Li, T.; Huang, Y.; Zhang, A. Q.; Miao, M. H. High performance carbon nanotube yarn supercapacitors with a surface-oxidized copper current collector. ACS Appl. Mater. Interfaces 2015, 7, 25835-25842.
[27]
Rytel, K.; Waszak, D.; Kędzierski, K.; Wróbel, D. Novel method of current collector coating by multiwalled carbon nanotube Langmuir layer for enhanced power performance of LiMn2O4 electrode of Li-ion batteries. Electrochim. Acta 2016, 222, 921-925.
[28]
Huang, Z. Q.; Li, J.; Yao, J. J.; Zhou, H. M.; Huang, Y. M.; Wang, L. H. Structures and interfaces of CNT: Pyrolytic C coated Al foil and its performance as current collector of electrochemical double layer capacitor. J. Mater. Sci. Mater. Electron. 2017, 28, 15095-15105.
[29]
Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867-2872.
[30]
Wang, M. Z.; Tang, M.; Chen, S. L.; Ci, H. N.; Wang, K. X.; Shi, L. R.; Lin, L.; Ren, H. Y.; Shan, J. Y.; Gao, P. et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv. Mater. 2017, 29, 1703882.
[31]
Luo, S. H.; Li, J. Y.; Bao, S.; Liu, Y. Y.; Wang, Z. Y. Na3V2(PO4)3/C composite prepared by sol-gel method as cathode for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A1460-A1465.
[32]
Zhang, Z. Y.; Lee, C. S.; Zhang, W. Vertically aligned graphene nanosheet arrays: Synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 2017, 7, 1700678.
[33]
Shi, L. R.; Pang, C. L.; Chen, S. L.; Wang, M. Z.; Wang, K. X.; Tan, Z. J.; Gao, P.; Ren, J.; Huang, Y.; Peng, H. et al. Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett. 2017, 17, 3681-3687.
[34]
Vogel, J. E.; Forouzan, M. M.; Hardy, E. E.; Crawford, S. T.; Wheeler, D. R.; Mazzeo, B. A. Electrode microstructure controls localized electronic impedance in Li-ion batteries. Electrochim. Acta 2019, 297, 820-825.
[35]
Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156-160.
[36]
Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444-450.
[37]
Tiwari, S. K.; Samuel, S.; Singh, R. N.; Poillerat, G.; Koenig, J. F.; Chartier, P. Active thin NiCo2O4 film prepared on nickel by spray pyrolysis for oxygen evolution. Int. J. Hydrog. Energy 1995, 20, 9-15.
[38]
Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506-526.
[39]
Chen, L.; Zhao, Y. M.; Liu, S. H.; Zhao, L. Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 44485-44493.
[40]
Kim, H.; Lim, H.; Kim, H. S.; Kim, K. J.; Byun, D.; Choi, W. Polydopamine-derived n-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 2019, 12, 397-404.
File
12274_2020_2780_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2020
Revised: 25 March 2020
Accepted: 26 March 2020
Published: 24 April 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is financially supported by the National Basic Research Program of China (No. 2016YFA0200101), Beijing Municipal Science & Technology Commission (No. Z181100004818001), and the National Natural Science Foundation of China (No. 21525310).

Return