Journal Home > Volume 14 , Issue 2

A well-established strategy to synthesize heterogeneous, metal-organic framework (MOF) catalysts that exhibit nanoconfinement effects, and specific pores with highly-localized catalytic sites, is to use organic linkers containing organocatalytic centers. Here, we report that by combining this linker approach with reticular chemistry, and exploiting three-dimensioanl (3D) MOF-structural data from the Cambridge Structural Database, we have designed four heterogeneous MOF-based catalysts for standard organic transformations. These programmable MOFs are isoreticular versions of pcu IRMOF-16, fcu UiO-68 and pillared-pcu SNU-8X, the three most common topologies of MOFs built from the organic linker p,p’-terphenyldicarboxylic acid (tpdc). To synthesize the four squaramide-based MOFs, we designed and synthesized a linker, 4,4’-((3,4-dioxocyclobut-1-ene-1,2-diyl)bis(azanedyil))dibenzoic acid (Sq_tpdc), which is identical in directionality and length to tpdc but which contains organocatalytic squaramide centers. Squaramides were chosen because their immobilization into a framework enhances its reactivity and stability while avoiding any self-quenching phenomena. Therefore, the four MOFs share the same organocatalytic squaramide moiety, but confine it within distinct pore environments. We then evaluated these MOFs as heterogeneous H-bonding catalysts in organic transformations: a Friedel-Crafts alkylation and an epoxide ring-opening. Some of them exhibited good performance in both reactions but all showed distinct catalytic profiles that reflect their structural differences.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide

Show Author's information Anna Broto-Ribas1,§Claudia Vignatti1,§Alicia Jimenez-Almarza2Javier Luis-Barrera3Zahra Dolatkhah2Felipe Gándara4Inhar Imaz1,( )Rubén Mas-Ballesté3,5,( )José Alemán2,5,( )Daniel Maspoch1,6,( )
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08193 Barcelona, Spain
Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
Institute for Advanced Research in Chemical Sciences (IAdChem), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100 Barcelona, Spain

§ Anna Broto-Ribas and Claudia Vignatti contributed equally to this work.

Abstract

A well-established strategy to synthesize heterogeneous, metal-organic framework (MOF) catalysts that exhibit nanoconfinement effects, and specific pores with highly-localized catalytic sites, is to use organic linkers containing organocatalytic centers. Here, we report that by combining this linker approach with reticular chemistry, and exploiting three-dimensioanl (3D) MOF-structural data from the Cambridge Structural Database, we have designed four heterogeneous MOF-based catalysts for standard organic transformations. These programmable MOFs are isoreticular versions of pcu IRMOF-16, fcu UiO-68 and pillared-pcu SNU-8X, the three most common topologies of MOFs built from the organic linker p,p’-terphenyldicarboxylic acid (tpdc). To synthesize the four squaramide-based MOFs, we designed and synthesized a linker, 4,4’-((3,4-dioxocyclobut-1-ene-1,2-diyl)bis(azanedyil))dibenzoic acid (Sq_tpdc), which is identical in directionality and length to tpdc but which contains organocatalytic squaramide centers. Squaramides were chosen because their immobilization into a framework enhances its reactivity and stability while avoiding any self-quenching phenomena. Therefore, the four MOFs share the same organocatalytic squaramide moiety, but confine it within distinct pore environments. We then evaluated these MOFs as heterogeneous H-bonding catalysts in organic transformations: a Friedel-Crafts alkylation and an epoxide ring-opening. Some of them exhibited good performance in both reactions but all showed distinct catalytic profiles that reflect their structural differences.

Keywords: metal-organic frameworks, reticular chemistry, H-bond catalysis, squaramide, Friedel-Crafts, epoxide ring-opening

References(63)

[1]
Y. B. Huang,; J. Liang,; X. S. Wang,; R. Cao, Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126-157.
[2]
A. Dhakshinamoorthy,; Z. H. Li,; H. Garcia, Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134-8172.
[3]
J. W. Liu,; L. F. Chen,; H. Cui,; J. Y. Zhang,; L. Zhang,; C. Y. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011-6061.
[4]
Y. B. Huang,; Z. J. Lin,; R. Cao, Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Chem.—Eur. J. 2011, 17, 12706-12712.
[5]
Y. B. Huang,; Q. Wang,; J. Liang,; X. S. Wang,; R. Cao, Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc. 2016, 138, 10104-10107.
[6]
J. V. Alegre-Requena,; E. Marqués-López,; R. P. Herrera,; D. D. Díaz, Metal-organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm 2016, 18, 3985-3995.
[7]
P. C. Rao,; S. Mandal, Potential utilization of metal-organic frameworks in heterogeneous catalysis: A case study of hydrogen-bond donating and single-site catalysis. Chem.—Asian J. 2019, 14, 4087-4102.
[8]
X. W. Dong,; T. Liu,; Y. Z. Hu,; X. Y. Liu,; C. M. Che, Urea postmodified in a metal-organic framework as a catalytically active hydrogen-bond-donating heterogeneous catalyst. Chem. Commun. 2013, 49, 7681-7683.
[9]
Y. Luan,; N. N. Zheng,; Y. Qi,; J. Tang,; G. Wang, Merging metal-organic framework catalysis with organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale. Catal. Sci. Technol. 2014, 4, 925-929.
[10]
S. J. Garibay,; Z. Q. Wang,; S. M. Cohen, Evaluation of heterogeneous metal-organic framework organocatalysts prepared by postsynthetic modification. Inorg. Chem. 2010, 49, 8086-8091.
[11]
Y. D. Zang,; J. Shi,; F. M. Zhang,; Y. J. Zhong,; W. D. Zhu, Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catal. Sci. Technol. 2013, 3, 2044-2049.
[12]
S. Aguado,; J. Canivet,; Y. Schuurman,; D. Farrusseng, Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure-activity study. J. Catal. 2011, 284, 207-214.
[13]
X. P. Zhang,; Z. J. Zhang,; J. Boissonnault,; S. M. Cohen, Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. Chem. Commun. 2016, 52, 8585-8588.
[14]
S. M. Cohen,; Z. J. Zhang,; J. A. Boissonnault, Toward “metalloMOFzymes”: Metal-organic frameworks with single-site metal catalysts for small-molecule transformations. Inorg. Chem. 2016, 55, 7281-7290.
[15]
A. A. Tehrani,; S. Abedi,; A. Morsali,; J. Wang,; P. C. Junk, Urea-containing metal-organic frameworks as heterogeneous organocatalysts. J. Mater. Chem. A 2015, 3, 20408-20415.
[16]
P. C. Rao,; S. Mandal, Friedel-Crafts alkylation of indoles with nitroalkenes through hydrogen-bond-donating metal-organic framework. ChemCatChem 2017, 9, 1172-1176.
[17]
E. A. Hall,; L. R. Redfern,; M. H. Wang,; K. A. Scheidt, Lewis acid activation of a hydrogen bond donor metal-organic framework for catalysis. ACS Catal. 2016, 6, 3248-3252.
[18]
D. Markad,; S. K. Mandal, Design of a primary-amide-functionalized highly efficient and recyclable hydrogen-bond-donating heterogeneous catalyst for the Friedel-Crafts alkylation of indoles with β-nitrostyrenes. ACS Catal. 2019, 9, 3165-3173.
[19]
Z. F. Ju,; S. C. Yan,; D. Q. Yuan, De novo tailoring pore morphologies and sizes for different substrates in a urea-containing MOFs catalytic platform. Chem. Mater. 2016, 28, 2000-2010.
[20]
H. Zhang,; X. W. Gao,; L. Wang,; X. S. Zhao,; Q. Y. Li,; X. J. Wang, Microwave-assisted synthesis of urea-containing zirconium metal-organic frameworks for heterogeneous catalysis of Henry reactions. CrystEngComm 2019, 21, 1358-1362.
[21]
X. J. Wang,; J. Li,; Q. Y. Li,; P. Z. Li,; H. Lu,; Q. Y. Lao,; R. Ni,; Y. H. Shi,; Y. L. Zhao, A urea decorated (3,24)-connected rht-type metal-organic framework exhibiting high gas uptake capability and catalytic activity. CrystEngComm 2015, 17, 4632-4636.
[22]
P. Serra-Crespo,; E. V. Ramos-Fernandez,; J. Gascon,; F. Kapteijn, Synthesis and characterization of an amino functionalized MIL-101(Al): Separation and catalytic properties. Chem. Mater. 2011, 23, 2565-2572.
[23]
P. W. Siu,; Z. J. Brown,; O. K. Farha,; J. T. Hupp,; K. A. Scheidt, A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal-organic framework UiO-67. Chem. Commun. 2013, 49, 10920-10922.
[24]
J. M. Roberts,; B. M. Fini,; A. A. Sarjeant,; O. K. Farha,; J. T. Hupp,; K. A. Scheidt, Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts. J. Am. Chem. Soc. 2012, 134, 3334-3337.
[25]
C. M. McGuirk,; M. J. Katz,; C. L. Stern,; A. A. Sarjeant,; J. T. Hupp,; O. K. Farha,; C. A. Mirkin, Turning on catalysis: Incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal-organic framework. J. Am. Chem. Soc. 2015, 137, 919-925.
[26]
D. J. Lun,; G. I. N. Waterhouse,; S. G. Telfer, A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks. J. Am. Chem. Soc. 2011, 133, 5806-5809.
[27]
C. Vignatti,; J. Luis-Barrera,; V. Guillerm,; I. Imaz,; R. Mas-Ballesté,; J. Alemán,; D. Maspoch, Squaramide-IRMOF-16 analogue for catalysis of solvent-free, epoxide ring-opening tandem and multicomponent reactions. ChemCatChem 2018, 10, 3995-3998.
[28]
J. Liang,; R. P. Chen,; X. Y. Wang,; T. T. Liu,; X. S. Wang,; Y. B. Huang,; R. Cao, Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides. Chem. Sci. 2017, 8, 1570-1575.
[29]
O. M. Yaghi, Reticular chemistry in all dimensions. ACS Cent. Sci. 2019, 5, 1295-1300.
[30]
O. M. Yaghi, Reticular chemistry: Molecular precision in infinite 2D and 3D. Mol. Front. J. 2019, 3, 66-83.
[31]
C. R. Groom,; I. J Bruno,; M. P. Lightfoot,; S. C. Ward, The Cambridge structural database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, B72, 171-179.
[32]
R. I. Storer,; C. Aciro,; L. H. Jones, Squaramides: Physical properties, synthesis and applications. Chem. Soc. Rev. 2011, 40, 2330-2346.
[33]
J. Juanhuix,; F. Gil-Ortiz,; G. Cuni,; C. Colldelram,; J. Nicolás,; J. Lidón,; E. Boter,; C. Ruget,; S. Ferrer,; J. Benach, Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the Alba Synchrotron. J. Synchrotron Radiat. 2014, 21, 679-689.
[34]
W. Kabsch, XDS. Acta Crystallogr. Sect. D 2010, 66, 125-132.
[35]
G. Sheldrick, SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015, 71, 3-8.
[36]
O. V. Dolomanov,; L. J. Bourhis,; R. J. Gildea,; J. A. K. Howard,; H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
[37]
A. L. Spek, PLATON/SQUEEZE. Acta Cryst. 2020, E76, 1-11
[38]
K. Manna,; P. F Ji,; Z. K. Lin,; F. X. Greene,; A. Urban,; N. C. Thacker,; W. B. Lin, Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes. Nat. Commun. 2016, 7, 12610.
[39]
A. Schaate,; P. Roy,; A. Godt; J. Lippke,; F. Waltz,; M. Wiebcke,; P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: From Nano to single crystals. Chem.—Eur. J. 2011, 17, 6643-6651.
[40]
M. Eddaoudi,; J. Kim,; N. Rosi,; D. Vodak,; J. Wachter,; M. O'Keeffe,; O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
[41]
M. Carboni,; Z. K. Lin,; C. W. Abney,; T. Zhang,; W. B. Lin, A metal-organic framework containing unusual eight-connected Zr-oxo secondary building units and orthogonal carboxylic acids for ultra-sensitive metal detection. Chem.—Eur. J. 2014, 20, 14965-14970.
[42]
Y. A. Li,; S. Yang,; Q. Y. Li,; J. P. Ma,, S. J. Zhang,; Y. B. Dong, UiO-68-ol NMOF-based fluorescent sensor for selective detection of HClO and its application in bioimaging. Inorg. Chem. 2017, 56, 13241-13248.
[43]
K. Manna,; T. Zhang,; M. Carboni,; C. W. Abney,; W. B. Lin, Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts. J. Am. Chem. Soc. 2014, 136, 13182-13185.
[44]
E. A. Dolgopolova,; O. A. Ejegbavwo,; C. R. Martin,; M. D. Smith,; W. Setyawan,; S. G. Karakalos,; C. H. Henager,; H. C. Z. Loye,; N. B. Shustova, Multifaceted modularity: A key for stepwise building of hierarchical complexity in actinide metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 16852-16861.
[45]
Y. He,; Y. L. Hou,; Y. L. Wong,; R. Xiao,; M. Q. Li,; Z. Hao,; J. Huang,; L. Wang,; M. Zeller,; J. He, Improving stability against desolvation and mercury removal performance of Zr(IV)-carboxylate frameworks by using bulky sulfur functions. J. Mater. Chem. A 2018, 6, 1648-1654.
[46]
B. J. Li,; B. Gui,; G. P. Hu,; D. Q. Yuan,; C. Wang, Postsynthetic modification of an alkyne-tagged zirconium metal-organic framework via a “click” reaction. Inorg. Chem. 2015, 54, 5139-5141.
[47]
H. B. Huang,; H. Sato,; T. Aida, Crystalline nanochannels with pendant azobenzene groups: Steric or polar effects on gas adsorption and diffusion? J. Am. Chem. Soc. 2017, 139, 8784-8787.
[48]
G. E. M. Schukraft,; S. Ayala, Jr.; B. L. Dick,; S. M. Cohen, Isoreticular expansion of polyMOFs achieves high surface area materials. Chem. Commun. 2017, 53, 10684-10687.
[49]
H. L. Jiang,; D. W. Feng,; T. F. Liu,; J. R. Li,; H. C. Zhou, Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 14690-14693.
[50]
B. Gui,; X. S. Meng,; Y. Chen,; J. W. Tian,; G. L. Liu,; C. C. Shen,; M. Zeller,; D. Q. Yuan,; C. Wang, Reversible tuning hydroquinone/ quinone reaction in metal-organic framework: Immobilized molecular switches in solid state. Chem. Mater. 2015, 27, 6426-6431.
[51]
T. Y. Luo,; C. Liu,; S. V. Eliseeva,; P. F. Muldoon,; S. Petoud,; N. L. Rosi, Rare earth pcu metal-organic framework platform based on RE43-OH)4(COO)62+ clusters: Rational design, directed synthesis, and deliberate tuning of excitation wavelengths. J. Am. Chem. Soc. 2017, 139, 9333-9340.
[52]
R. M. Wang,; M. H. Zhang,; X. B. Liu,; L. L. Zhang,; Z. X. Kang,; W. Wang,; X. Q. Wang,; F. N. Dai,; D. F. Sun, Tuning the dimensionality of interpenetration in a pair of framework-catenation isomers to achieve selective adsorption of CO2 and fluorescent sensing of metal ions. Inorg. Chem. 2015, 54, 6084-6086.
[53]
K. Oisaki,; Q. W. Li,; H. Furukawa,; A. U. Czaja,; O. M. Yaghi, A metal-organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc. 2010, 132, 9262-9264.
[54]
L. Liu,; X. J. Wang,; Q. Zhang,; Q. W. Li,; Y. L. Zhao, Distinct interpenetrated metal-organic frameworks constructed from crown ether-based strut analogue. CrystEngComm 2013, 13, 841-844.
[55]
C. L. Zhang,; H. Hao,; Z. Z. Shi,; H. G. Zheng, Four new metal-organic frameworks based on a rigid linear ligand: Synthesis, optical properties and structural investigation. CrystEngComm 2014, 16, 5662-5671.
[56]
J. Sahu,; M. Ahmad,; P. K. Bharadwaj, Structural diversity and luminescence properties of coordination polymers built with a rigid linear dicarboxylate and Zn(II)/Pb(II) ion. Cryst. Growth Des. 2013, 13, 2618-2627.
[57]
T. K. Prasad,; M. P. Suh, Metal-organic frameworks incorporating various alkoxy pendant groups: Hollow tubular morphologies, X-ray single-crystal structures, and selective carbon dioxide adsorption properties. Chem.—Asian J. 2015, 10, 2257-2263.
[58]
I. M. Hauptvogel,; R. Biedermann,; N. Klein,; I. Senkovska,; A. Cadiau,; D. Wallacher,; R. Feyerherm,; S. Kaskel, Flexible and hydrophobic Zn-based metal-organic framework. Inorg. Chem. 2011, 50, 8367-8374.
[59]
J. Sahu,; A. Aijaz,; Q. Xu,; P. K. Bharadwaj, A three-dimensional pillared-layer metal-organic framework: Synthesis, structure and gas adsorption studies. Inorg. Chim. Acta 2015, 430, 193-198.
[60]
R. Singh,; P. K. Bharadwaj, Coordination polymers built with a linear bis-imidazole and different dicarboxylates: Unusual entanglement and emission properties. Cryst. Growth Des. 2013, 13, 3722-3733.
[61]
G. Dutta,; A. K. Jana,; D. K. Singh,; M. Eswaramoorthy,; S. Natarajan, Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal-organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure. Chem.—Asian J. 2018, 13, 2677-2684.
[62]
X. Y. Liu,; B. Liu,; G. H. Li,; Y. L. Liu, Two anthracene-based metal-organic frameworks for highly effective photodegradation and luminescent detection in water. J. Mater. Chem. A 2018, 6, 17177-17185.
[63]
D. W. Feng,; K. C. Wang,; Z. W. Wei,, Y. P. Chen,; C. M. Simon,; R. K. Arvapally,; R. L. Martin,; M. Bosch,; T. F. Liu,; S. Fordham, et al. Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks. Nat. Commun. 2014, 5, 5723.
File
12274_2020_2779_MOESM1_ESM.pdf (2.9 MB)
12274_2020_2779_MOESM2_ESM.cif (4.2 MB)
12274_2020_2779_MOESM3_ESM.cif (2.2 MB)
12274_2020_2779_MOESM4_ESM.cif (3.4 MB)
12274_2020_2779_MOESM5_ESM.cif (1.6 MB)
12274_2020_2779_MOESM6_ESM.cif (2.5 MB)
12274_2020_2779_MOESM7_ESM.cif (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2020
Revised: 15 March 2020
Accepted: 25 March 2020
Published: 15 April 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Spanish MINECO (projects RTI2018-095622-B-I00 and RTI2018-095038-B-I00), the Catalan AGAUR (project 2017 SGR 238), the ERC under the EU FP7 (ERC-Co 615954), European Union’s Horizon 2020 research and innovation program under grant agreement No. 685727, and European Structural Funds (S2018/NMT-4367). It was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706).

Return