Journal Home > Volume 13 , Issue 6

Two-dimensional (2D) carbon nanomaterials with hierarchical porous structure and heteroatoms doping are highly desirable in the fields of energy storage because of their rich active surface and open ion diffusion channels. However, the scalable preparation of carbon materials simultaneously possessing ultrathin 2D feature and hierarchical pores remains a considerable challenge. Herein, a facile one-step method to massively fabricate 2D porous chitin nanosheets (coded as PCNs) via a phytic acid assisted top-down exfoliation of bulk chitin under hydrothermal treatment was presented. Subsequently, 2D carbon nanosheets with extra-thin thickness (3.6 nm), well-defined hierarchical porosity, high specific surface area (855 m2·g-1), as well as abundant self-doped heteroatoms (N, O, P) were fabricated by carbonizing the PCNs, and was named as HPCNs. The as-obtained HPCNs demonstrated remarkable electrochemical performance as electrode material for supercapacitors. The symmetric supercapacitors (SSCs) based on HPCNs exhibited a high specific capacitance of 79 F·g-1 (316 F·g-1 for single electrode) in 6 M KOH aqueous electrolyte solution, as well as a remarkable energy density of 23.8 W·h·kg-1 by using 1 M Li2SO4 as electrolyte. It is also demonstrated that HPCNs/PCNs hybrid dispersions can be used as inks to fabricate conductive films and energy devices with high strength and superior flexibility. This work paves a new avenue for the economical and large-scale synthesis of 2D hierarchically porous carbon materials for energy storage related applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage

Show Author's information Lingfeng Gao1,§Guoqun Zhang2,§Jie Cai1Liang Huang2( )Jun Zhou2Lina Zhang1( )
College of Chemistry and Molecular Science, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

§ Lingfeng Gao and Guoqun Zhang contributed equally to this work.

Abstract

Two-dimensional (2D) carbon nanomaterials with hierarchical porous structure and heteroatoms doping are highly desirable in the fields of energy storage because of their rich active surface and open ion diffusion channels. However, the scalable preparation of carbon materials simultaneously possessing ultrathin 2D feature and hierarchical pores remains a considerable challenge. Herein, a facile one-step method to massively fabricate 2D porous chitin nanosheets (coded as PCNs) via a phytic acid assisted top-down exfoliation of bulk chitin under hydrothermal treatment was presented. Subsequently, 2D carbon nanosheets with extra-thin thickness (3.6 nm), well-defined hierarchical porosity, high specific surface area (855 m2·g-1), as well as abundant self-doped heteroatoms (N, O, P) were fabricated by carbonizing the PCNs, and was named as HPCNs. The as-obtained HPCNs demonstrated remarkable electrochemical performance as electrode material for supercapacitors. The symmetric supercapacitors (SSCs) based on HPCNs exhibited a high specific capacitance of 79 F·g-1 (316 F·g-1 for single electrode) in 6 M KOH aqueous electrolyte solution, as well as a remarkable energy density of 23.8 W·h·kg-1 by using 1 M Li2SO4 as electrolyte. It is also demonstrated that HPCNs/PCNs hybrid dispersions can be used as inks to fabricate conductive films and energy devices with high strength and superior flexibility. This work paves a new avenue for the economical and large-scale synthesis of 2D hierarchically porous carbon materials for energy storage related applications.

Keywords: energy storage, mass production, two-dimensional carbons materials, hierarchical porosity

References(62)

[1]
Yu, S. L.; Wu, X. Q., Wang, Y. P.; Guo, X.; Tong, L. M. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128.
[2]
Li, B.; Xu, H. F.; Ma, Y.; Yang, S. B. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Nanoscale Horiz. 2019, 4, 77-98.
[3]
Deng, J.; Deng, D. H.; Bao, X. H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective. Adv. Mater. 2017, 29, 1606967.
[4]
Wang, L.; Zhang, Y.; Chen, L.; Xu, H. X.; Xiong, Y. J. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 2018, 30, 1801955.
[5]
Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524-1530.
[6]
Zheng, X. Y.; Luo, J. Y.; Lv, W.; Wang, D. W.; Yang, Q. H. Two- dimensional porous carbon: Synthesis and ion-transport properties. Adv. Mater. 2015, 27, 5388-5395.
[7]
He, Y. F.; Zhuang, X. D.; Lei, C. J.; Lei, L. C.; Hou, Y.; Mai, Y. Y.; Feng, X. L. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today 2019, 24, 103-119.
[8]
Yang, M.; Zhou, Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci. 2017, 4, 1600408.
[9]
Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816-2819.
[10]
Liu, M. Y.; Niu, J.; Zhang, Z. P.; Dou, M. L.; Wang, F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 2018, 51, 366-372.
[11]
Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.
[12]
Wan, J.; Huang, L.; Wu, J. B.; Xiong, L. K.; Hu, Z. M.; Yu, H. M.; Li, T. Q.; Zhou, J. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv. Funct. Mater. 2018, 28, 1800382.
[13]
Hao, G. P.; Tang, C.; Zhang, E.; Zhai, P. Y.; Yin, J.; Zhu, W. C.; Zhang, Q.; Kaskel S. Thermal exfoliation of layered Metal-Organic Frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries. Adv. Mater. 2017, 29, 1702829.
[14]
Wan, J.; Wu, J. B.; Gao, X.; Li, T. Q.; Hu, Z. M.; Yu, H. M.; Huang, L. Structure confined porous Mo2C for efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1703933.
[15]
Wu, X. L.; Jiang, L. L.; Long, C. L.; Fan, Z. J. From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy 2015, 13, 527-536.
[16]
Liu, T. Y.; Zhang, F.; Song, Y.; Li, Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 2017, 5, 17705-17733.
[17]
Hu, F. Y.; Wang, J. Y.; Hu, S.; Li. L. F.; Shao, W. L.; Qiu, J. S.; Lei, Z. B.; Deng, W. Q.; Jian, X. G. Engineered fabrication of hierarchical frameworks with tuned pore structure and N,O-Co-doping for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 31940-31949.
[18]
Pan, L.; Wang, Y. X.; Hu, H.; Li, X. X.; Liu, J. L.; Guan, L.; Tian, W.; Wang, X. B.; Li, Y. P.; Wu, M. B. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 2018, 134, 345-353.
[19]
Wang, S.; Cheng, F.; Zhang, P.; Li, W. C.; Lin, Y.; Lu, A. H. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Res. 2017, 10, 2106-2116.
[20]
Yao, L.; Wu, Q. Zhang, P. X.; Zhang, J. M.; Wang, D. R.; Li, Y. L.; Ren, X. Z.; Mi, H. W.; Deng, L. B.; Zheng, Z. J. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 2018, 30, 1706054.
[21]
Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574-3592.
[22]
Yang, J.; Wu, H. L.; Zhu, M.; Ren, W. J.; Lin, Y.; Chen, H. B.; Pan, F. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/micropores carbon for surcapacitors. Nano Energy 2017, 33, 453-461.
[23]
Kang, D. M.; Liu, Q. L.; Gu, J. J.; Su, Y. S.; Zhang, W.; Zhang, D. “Egg-Box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 2015, 9, 11225-11233.
[24]
Zhang, F.; Liu, T. Y.; Li, M. Y.; Yu, M. H.; Luo, Y.; Tong, Y. X.; Li, Y. Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 2017, 17, 3097-3104.
[25]
Zhao, H. Y.; Zhang, F.; Zhang, S. M.; He, S. N.; Shen, F.; Han, X. G.; Yin, Y. D.; Gao, C. B. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 2018, 11, 1822-1833.
[26]
Sevilla, M.; Ferrero, G. A.; Fuertes, A. B. Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon 2017, 114, 50-58.
[27]
Wu, S. L.; Chen, G. X.; Kim, N. Y.; Ni, K.; Zeng, W. C.; Zhao, Y.; Tao, Z. C.; Ji, H. X.; Lee, Z.; Zhu, Y. W. Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small 2016, 12, 2376-2384.
[28]
Gong, Y. N.; Li, D. L.; Luo, C. Z.; Fu, Q.; Pan, C. X. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017, 19, 4132-4140.
[29]
Wang, Z. F.; Zhu, M. S.; Pei. Z. X.; Xue, Q.; Li, H. F.; Huang, Y.; Zhi, C. Y. Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Mater. Sci. Eng. R 2020, 139, 100520.
[30]
Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.
[31]
Duan, B.; Huang, Y.; Lu, A.; Zhang, L. N. Recent advances in chitin based materials constructed via physical methods. Prog. Polym. Sci. 2018, 82, 1-33.
[32]
Gao, L. F.; Xiong, L. K.; Xu, D. F.; Cai, J.; Zhou, J.; Huang, L.; Zhang, L. N. Distinctive construction of chitin-derived hierarchically porous carbon microspheres/polyaniline for high-rate supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 28918-28927.
[33]
Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773-779.
[34]
Duan, B.; Liu, F.; He, M.; Zhang, L. N. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835-2845.
[35]
Chen, P.; Zhang, L. N. Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules 2006, 7, 1700-1706.
[36]
Ifuku, S.; Saimoto, H. Chitin nanofibers: Preparations, modifications, and applications. Nanoscale 2012, 4, 3308-3318.
[37]
Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941-3994.
[38]
Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1702545.
[39]
Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.
[40]
Xu, D. F.; Xiao, X.; Cai, J.; Zhou, J.; Zhang, L. N. Highly rate and cycling stable electrode materials constructed from polyaniline/ cellulose nanoporous microspheres. J. Mater. Chem. A 2015, 3, 16424-16429.
[41]
Zhou, W.; Lei, S. J.; Sun, S. Q.; Ou, X. L.; Fu, Q.; Xu, Y. L.; Xiao, Y. H.; Cheng, B. C. From weed to multi-heteroatom-doped honeycomb-like porous carbon for advanced supercapacitors: A gelatinization-controlled one-step carbonization. J. Power Sources 2018, 402, 203-212.
[42]
Hou, J. H.; Jiang, K.; Wei, R.; Tahir, M.; Wu, X. G.; Shen, M.; Wang, X. Z.; Cao, C. B. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 30626-30634.
[43]
Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries. Adv. Sci. 2017, 4, 1600243.
[44]
Wang, X.; Lou, M. H.; Yuan, X. T.; Dong, W. J.; Dong, C. L.; Bi, H.; Huang, F. Q. Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. Carbon 2017, 118, 511-516.
[45]
Zhang, Y.; Ma, Q. T.; Li, H.; Yang, Y. W.; Luo, J. Y. Robust production of ultrahigh surface area carbon sheets for energy storage. Small 2018, 14, 1800133.
[46]
Wang, M. R.; Li, Y.; Fang, J.; Villa, C. J.; Xu, Y. B.; Hao, S. Q.; Li, J.; Liu, Y. X.; Wolverton, C.; Chen, X. Q. et al. Superior oxygen reduction reaction on phosphorus-doped carbon dot/graphene aerogel for all-solid-state flexible Al-air batteries. Adv. Energy Mater. 2020, 10, 1902736.
[47]
Sun, F.; Gao, J. H.; Pi, X. X.; Wang, L. J.; Yang, Y. Q.; Qu, Z. B.; Wu, S. H. High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources 2017, 337, 189-196.
[48]
Wang, J. X.; Xia, Y.; Liu, Y.; Li, W.; Zhao, D. Y. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy Storage Mater. 2019, 22, 147-153.
[49]
Luo, D.; Xu, J.; Guo, Q. B.; Fang, L. Z.; Zhu, X. H.; Xia, Q. Y.; Xia, H. Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1805371.
[50]
Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 2015, 176, 982-988.
[51]
Hao, R.; Yang, Y.; Wang, H.; Jia, B. B.; Ma, G. D.; Yu, D. D.; Guo, L.; Yang, S. H. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 2018, 45, 220-228.
[52]
Wu, F.; Dong, R. Q.; Bai, Y.; Li, Y.; Chen, G. H.; Wang, Z. H.; Wu, C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 21335-21342.
[53]
Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438-447.
[54]
Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484-7539.
[55]
Díez, N.; Mysyk, R.; Zhang, W.; Goikolea, E.; Carriazo, D. One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. J. Mater. Chem. A 2017, 5, 14619-14629.
[56]
Li, C. Y.; Wu, W. Z.; Wang, P.; Zhou, W. B.; Wang, J.; Chen, Y. H.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline-acidic electrolyte. Adv. Sci. 2019, 6, 1801665.
[57]
Liu, W.; Tang, Y. K.; Sun, Z. P.; Gao, S. S.; Ma, J. H.; Liu, L. A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors. Carbon 2017, 115, 754-762.
[58]
Wang, H. L.; Xu, Z. W.; Kohandehghan, A.; Li, Z.; Cui, K.; Tan, X. H.; Stepheson, T. J.; King'ondu, C. K.; Hoolt, C. B.; Olsen, B. C. et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013, 7, 5131-5141.
[59]
Huang, L.; Yao, X.; Yuan, L. Y.; Yao, B.; Gao, X.; Wan, J.; Zhou, P. P.; Xu, M.; Wu, J. B.; Yu, H. M. et al. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater. 2018, 12, 191-196.
[60]
Liu, B.; Zhou, X. H.; Chen, H. B.; Liu, Y. J.; Li, H. M. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim. Acta 2016, 208, 55-63.
[61]
Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2014, 2, 19848-19854.
[62]
Wang, Q.; Yan, J.; Wang, Y. B.; Wei, T.; Zhang, M. L.; Jing, X. Y.; Fan, Z. J. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 2014, 67, 119-127.
File
12274_2020_2778_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2020
Revised: 20 March 2020
Accepted: 23 March 2020
Published: 14 May 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (No. 21334005), and the Major International (Regional) Joint Research Project (No. 21620102004). The authors gratefully acknowledge the Analytical and Testing Center of WHU for allowing us to use its facilities.

Return