Journal Home > Volume 14 , Issue 2

By introduction of a new Fe(L1)2 spin-crossover (SCO) unit into the polynuclear system, a nano-scale Fe4(L2)4 molecular square architecture is designed through coordination-directed self-assembly strategy. Both the mononuclear Fe(L1)2 and tetranuclear Fe4(L2)4 complexes have been structurally confirmed by 1H nuclear magnetic resonance (NMR), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and temperature-dependent single crystal X-ray diffraction studies. Variable-temperature magnetic susceptibility measurements reveal the presence of an abrupt SCO behavior with a thermal hysteresis width of 4 K for Fe(L1)2. By clear contrast, Fe4(L2)4 undergoes a gradual spin transition behavior with enlarged thermal hysteresis width and higher spin transition temperature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

From a mononuclear FeL2 complex to a Fe4L4 molecular square: Designed assembly and spin-crossover property

Show Author's information Zhuo Wang1,2Li-Peng Zhou1,2Li-Xuan Cai1,2Chong-Bin Tian1,2,( )Qing-Fu Sun1,2,( )
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

By introduction of a new Fe(L1)2 spin-crossover (SCO) unit into the polynuclear system, a nano-scale Fe4(L2)4 molecular square architecture is designed through coordination-directed self-assembly strategy. Both the mononuclear Fe(L1)2 and tetranuclear Fe4(L2)4 complexes have been structurally confirmed by 1H nuclear magnetic resonance (NMR), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and temperature-dependent single crystal X-ray diffraction studies. Variable-temperature magnetic susceptibility measurements reveal the presence of an abrupt SCO behavior with a thermal hysteresis width of 4 K for Fe(L1)2. By clear contrast, Fe4(L2)4 undergoes a gradual spin transition behavior with enlarged thermal hysteresis width and higher spin transition temperature.

Keywords: iron, spin-crossover compound, molecular square, coordination-directed self-assembly, supramolecular chemistry

References(47)

[1]
C. Chappert,; A. Fert,; F. N. Van Dau, The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813-823.
[2]
M. Irie,; T. Fukaminato,; K. Matsuda,; S. Kobatake, Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev. 2014, 114, 12174-12277.
[3]
O. Sato, Dynamic molecular crystals with switchable physical properties. Nat. Chem. 2016, 8, 644-656.
[4]
Y. S. Meng,; T. Liu, Manipulating spin transition to achieve switchable multifunctions. Acc. Chem. Res. 2019, 52, 1369-1379.
[5]
M. Ruben,; K. S. Kumar, Sublimable spin crossover complexes: From spin-state switching to molecular devices. Angew. Chem., Int. Ed., in press, .
[6]
M. A. Halcrow, Spin-Crossover Materials: Properties and Applications; Wiley: UK, 2013.
[7]
O. Sato,; J. Tao,; Y. Z. Zhang, Control of magnetic properties through external stimuli. Angew. Chem., Int. Ed. 2007, 46, 2152-2187.
[8]
J. Tao,; R. J. Wei,; R. B. Huang,; L. S. Zheng, Polymorphism in spin-crossover systems. Chem. Soc. Res. 2012, 41, 703-737.
[9]
R. Bertoni,; M. Cammarata,; M. Lorenc,; S. F. Matar,; J. F. Létard,; H. T. Lemke,; E. Collet, Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. Acc. Chem. Res. 2015, 48, 774-781.
[10]
Z. P. Ni,; J. L. Liu,; N. Hogue,; W. Liu,; J. Y. Li,; Y. C. Chen,; M. L. Tong, Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coord. Chem. Rev. 2017, 335, 28-43.
[11]
S. Brooker, Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Res. 2015, 44, 2880-2892.
[12]
R. W. Hogue,; S. Singh,; S. Brooker, Spin crossover in discrete polynuclear iron(II) complexes. Chem. Soc. Res. 2018, 47, 7303-7338.
[13]
A. J. McConnell, Spin-state switching in Fe(II) helicates and cages. Supramol. Chem. 2018, 30, 858-868.
[14]
E. Breuning,; M. Ruben,; J. M. Lehn,; F. Renz,; Y. Garcia,; V. Ksenofontov,; P. Gütlich,; E. Wegelius,; K. Rissanen, Spin crossover in a supramolecular Fe4II[2×2] grid triggered by temperature, pressure, and light. Angew. Chem., Int. Ed. 2000, 39, 2504-2507.
[15]
M. Nihei,; M. Ui,; M. Yokota,; L. Q. Han,; A. Maeda,; H. Kishida,; H. Okamoto,; H. Oshio, Two-step spin conversion in a cyanide-bridged ferrous square. Angew. Chem., Int. Ed. 2005, 44, 6484-6487.
[16]
D. Y. Wu,; O. Sato,; Y. Einaga,; C. Y. Duan, A spin-crossover cluster of iron(II) exhibiting a mixed-spin structure and synergy between spin transition and magnetic interaction. Angew. Chem., Int. Ed. 2009, 48, 1475-1478.
[17]
B. Schneider,; S. Demeshko,; S. Dechert,; F. Meyer, A double-switching multistable Fe4 grid complex with stepwise spin-crossover and redox transitions. Angew. Chem., Int. Ed. 2010, 49, 9274-9277.
[18]
F. Li,; J. K. Clegg,; L. Goux-Capes,; G. Chastanet,; D. M. D'Alessandro,; J. F. Létard,; C. J. Kepert, A mixed-spin molecular square with a hybrid [2×2] grid/metallocyclic architecture. Angew. Chem., Int. Ed. 2011, 50, 2820-2823.
[19]
R. J. Wei,; Q. Huo,; J. Tao,; R. B. Huang,; L. S. Zheng, Spin-crossover FeII4 squares: Two-step complete spin transition and reversible single-crystal-to-single-crystal transformation. Angew. Chem., Int. Ed. 2011, 50, 8940-8943.
[20]
Y. T. Wang,; S. T. Li,; S. Q. Wu,; A. L. Cui,; D. Z. Shen,; H. Z. Kou, Spin transitions in Fe(II) metallogrids modulated by substituents, counteranions, and solvents. J. Am. Chem. Soc. 2013, 135, 5942-5945.
[21]
T. Matsumoto,; G. N. Newton,; T. Shiga,; S. Hayami,; Y. Matsui,; H. Okamoto,; R. Kumai,; Y. Murakami,; H. Oshio, Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat. Commun. 2014, 5, 3865.
[22]
B. Schäfer,; J. F. Greisch,; I. Faus,; T. Bodenstein,; I. Šalitroš,; O. Fuhr,; K. Fink,; V. Schünemann,; M. M. Kappes,; M. Ruben, Divergent coordination chemistry: Parallel synthesis of [2×2] iron(II) grid-complex tauto-conformers. Angew. Chem., Int. Ed. 2016, 55, 10881-10885.
[23]
S. Dhers,; A. Mondal,; D. Aguilà,; J. Ramírez,; S. Vela,; P. Dechambenoit,; M. Rouzières,; J. R. Nitschke,; R. Clérac,; J. M. Lehn, Spin state chemistry: Modulation of ligand pKa by spin state switching in a [2×2] iron(II) grid-type complex. J. Am. Chem. Soc. 2018, 140, 8218-8227.
[24]
T. Shiga,; Y. Sato,; M. Tachibana,; H. Sato,; T. Matsumoto,; H. Sagayama,; R. Kumai,; Y. Murakami,; G. N. Newton,; H. Oshio, Carboxylic acid functionalized spin-crossover iron(II) grids for tunable switching and hybrid electrode fabrication. Inorg. Chem. 2018, 57, 14013-14017.
[25]
F. B. L. Cougnon,; K. Caprice,; M. Pupier,; A. Bauzá,; A. Frontera, A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 2018, 140, 12442-12450.
[26]
Z. Y. Li,; J. W. Dai,; M. Damjanović,; T. Shiga,; J. H. Wang,; J. Zhao,; H. Oshio,; M. Yamashita,; X. H. Bu, Structure switching and modulation of the magnetic properties in diarylethene-bridged metallosupramolecular compounds by controlled coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 4339-4344.
[27]
R. Chakrabarty,; P. S. Mukherjee,; P. J. Stang, Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810-6918.
[28]
T. Zhang,; L. P. Zhou,; X. Q. Guo,; L. X. Cai,; Q. F. Sun, Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles. Nat. Commun. 2017, 8, 15898.
[29]
D. J. Tranchemontagne,; Z. Ni,; M. O'Keeffe,; O. M. Yaghi, Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136-5147.
[30]
Y. Lu,; H. N. Zhang,; G. X. Jin, Molecular borromean rings based on half-sandwich organometallic rectangles. Acc. Chem. Res. 2018, 51, 2148-2158.
[31]
M. X. Han,; D. M. Engelhard,; G. H. Clever, Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 2014, 43, 1848-1860.
[32]
C. M. Hong,; R. G. Bergman,; K. N. Raymond,; F. D. Toste, Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447-2455.
[33]
A. J. McConnell,; C. S. Wood,; P. P. Neelakandan,; J. R. Nitschke, Stimuli-responsive metal-ligand assemblies. Chem. Rev. 2015, 115, 7729-7793.
[34]
K. Harris,; D. Fujita,; M. Fujita, Giant hollow MnL2n spherical complexes: Structure, functionalisation and applications. Chem. Commun. 2013, 49, 6703-6712.
[35]
M. Fujita,; J. Yazaki,; K. Ogura, Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4'-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 1990, 112, 5645-5647.
[36]
M. Fujita,; M. Tominaga,; A. Hori,; B. Therrien, Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 2005, 38, 369-378.
[37]
Y. Z. Liu,; M. O'Keeffe,; M. M. J. Treacy,; O. M. Yaghi, The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: A library for reticular chemistry. Chem. Soc. Rev. 2018, 47, 4642-4664.
[38]
K. Wu,; K. Li,; S. Chen,; Y. J. Hou,; Y. L. Lu,; J. S. Wang,; M. J. Wei,; M. Pan,; C. Y. Su, The redox coupling effect in a photocatalytic RuII- PdII cage with TTF guest as electron relay mediator for visible-light hydrogen-evolving promotion. Angew. Chem., Int. Ed. 2020, 59, 2639-2643.
[39]
L. Wang,; B. Song,; S. Khalife,; Y. M. Li,; L. J. Ming,; S. Bai,; Y. P. Xu,; H. Yu,; M. Wang,; H. Wang, et al. Introducing seven transition metal ions into terpyridine-based supramolecules: Self-assembly and dynamic ligand exchange study. J. Am. Chem. Soc. 2020, 142, 1811-1821.
[40]
H. Sepehrpour,; W. X. Fu,; Y. Sun,; P. J. Stang, Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc. 2019, 141, 14005-14020.
[41]
X. Z. Li,; L. P. Zhou,; L. L. Yan,; D. Q. Yuan,; C. S. Lin,; Q. F. Sun, Evolution of luminescent supramolecular lanthanide M2nL3n complexes from helicates and tetrahedra to cubes. J. Am. Chem. Soc. 2017, 139, 8237-8244.
[42]
H. Wang,; X. M. Qian,; K. Wang,; M. Su,; W. W. Haoyang,; X. Jiang,; R. Brzozowski,; M. Wang,; X. Gao,; Y. M. Li, et al. Supramolecular kandinsky circles with high antibacterial activity. Nat. Commun. 2018, 9, 1815.
[43]
M. A. Halcrow, Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines— A versatile system for spin-crossover research. Coord. Chem. Rev. 2009, 253, 2493-2514.
[44]
L. J. K. Cook,; R. Mohammed,; G. Sherborne,; T. D. Roberts,; S. Alvarez,; M. A. Halcrow, Spin state behavior of iron(II)/dipyrazolylpyridine complexes. New insights from crystallographic and solution measurements. Coord. Chem. Rev. 2015, 289-290, 2-12.
[45]
M. Attwood,; S. S. Turner, Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2':6',2''-terpyridine ligands: Untapped potential for spin crossover research and beyond. Coord. Chem. Rev. 2017, 353, 247-277.
[46]
R. J. Wei,; J. Tao,; R. B. Huang,; L. S. Zheng, Anion-dependent spin crossover and coordination assembly based on [Fe(tpa)]2+[tpa = tris(2-pyridylmethyl)amine] and [N(CN)2]-: Square, zigzag, dimeric, and [4+1]-cocrystallized complexes. Eur. J. Inorg. Chem. 2013, 2013, 916-926.
[47]
J. A. Real,; A. B. Gaspar,; V. Niel,; M. C. Muñoz, Communication between iron(II) building blocks in cooperative spin transition phenomena. Coord. Chem. Rev. 2003, 236, 121-141.
File
12274_2020_2777_MOESM1_ESM.pdf (3.3 MB)
12274_2020_2777_MOESM2_ESM.pdf (924.3 KB)
12274_2020_2777_MOESM3_ESM.cif (3.7 MB)
12274_2020_2777_MOESM4_ESM.cif (4.8 MB)
12274_2020_2777_MOESM5_ESM.cif (987.7 KB)
12274_2020_2777_MOESM6_ESM.cif (974.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2020
Revised: 18 March 2020
Accepted: 24 March 2020
Published: 15 April 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21825107, 21971237, and 21801241) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).

Return