Journal Home > Volume 13 , Issue 6

A simple hand calculation method based on group theory is proposed to predict the near field maps of finite metallic nanoparticles (MNP) of canonical geometries: prism, cube, hexagon, disk, sphere, etc. corresponding to low order localized surface plasmon resonance excitations. In this article, we report the principles of the group theory approach and demonstrate, through several examples, the general character of the group theory method which can be applied to describe the plasmonic response of particles of finite or infinite symmetry point groups. Experimental validation is achieved by collection of high-resolution subwavelength near-field maps by photoemission electron microscopy (PEEM) on a representative set of Au colloidal particles exhibiting either finite (hexagon) or infinite (disk, sphere) symmetry point groups.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmonics of regular shape particles, a simple group theory approach

Show Author's information Sarra Mitiche1,Sylvie Marguet2Fabrice Charra1Ludovic Douillard1( )
Université Paris-Saclay, CEA, CNRS, SPEC, F-91191 Gif sur Yvette, France
Université Paris-Saclay, CEA, CNRS, NIMBE, F-91191 Gif sur Yvette, France

Present address: Université Paris-Saclay, ENS Paris-Saclay, CentraleSupelec, CNRS, LuMIn, F-91191 Gif sur Yvette, France

Abstract

A simple hand calculation method based on group theory is proposed to predict the near field maps of finite metallic nanoparticles (MNP) of canonical geometries: prism, cube, hexagon, disk, sphere, etc. corresponding to low order localized surface plasmon resonance excitations. In this article, we report the principles of the group theory approach and demonstrate, through several examples, the general character of the group theory method which can be applied to describe the plasmonic response of particles of finite or infinite symmetry point groups. Experimental validation is achieved by collection of high-resolution subwavelength near-field maps by photoemission electron microscopy (PEEM) on a representative set of Au colloidal particles exhibiting either finite (hexagon) or infinite (disk, sphere) symmetry point groups.

Keywords: surface plasmon resonance, sphere, group theory, hexagon, disk, photoemission electron microscopy (PEEM)

References(57)

[1]
Garcia, M. A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D: Appl. Phys. 2011, 44, 283001.
[2]
Kong, X. T.; Wang, Z. M.; Govorov, A. O. Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination. Adv. Opt. Mater. 2017, 5, 1600594.
[3]
Wei, H.; Xu, H. X. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794-10805.
[4]
Yanik, A. A.; Cetin, A. E.; Huang, M.; Artar, A.; Mousavi, S. H.; Khanikaev, A.; Connor, J. H.; Shvets, G.; Altug, H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA 2011, 108, 11784-11789.
[5]
Wang, H. C. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: Nonlocal limitations. Sci. Rep. 2018, 8, 9589.
[6]
Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[7]
Baffou, G.; Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 2013, 7, 171-187.
[8]
Palermo, G.; Cataldi, U.; Condello, A.; Caputo, R.; Bürgi, T.; Umeton, C.; De Luca, A. Flexible thermo-plasmonics: An opto-mechanical control of the heat generated at the nanoscale. Nanoscale. 2018, 10, 16556-16561.
[9]
Shi, X.; Ueno, K.; Takabayashi, N.; Misawa, H. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titanium dioxide photoelectrode. J. Phys. Chem. C 2013, 117, 2494-2499.
[10]
Oshikiri, T.; Ueno, K.; Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem., Int. Ed. 2014, 53, 9802-9805.
[11]
Labouret, T.; Audibert, J. F.; Pansu, R. B.; Palpant, B. Plasmon-assisted production of reactive oxygen species by single gold nanorods. Small 2015, 11, 4475-4479.
[12]
Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infrared light activation. Small 2014, 10, 1612-1622.
[13]
Zhao, T. T.; Shen, X. Q.; Li, L.; Guan, Z. P.; Gao, N. Y.; Yuan, P. Y.; Yao, S. Q.; Xu, Q. H.; Xu, G. Q. Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 2012, 4, 7712-7719.
[14]
Wang, S. W.; Xi, W.; Cai, F. H.; Zhao, X. Y.; Xu, Z. P.; Qian, J.; He, S. L. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics 2015, 5, 251-266.
[15]
Cheng, Y. H.; Tam, T. S. C.; Chau, S. L.; Lai, S. K. M.; Tang, H. W.; Lok, C. N.; Lam, C. W.; Ng, K. M. Plasmonic gold nanoparticles as multifaceted probe for tissue imaging. Chem. Commun. 2019, 55, 2761-2764.
[16]
Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189-193.
[17]
Talove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; 3rd ed. Artech House: Boston, 2005.
DOI
[18]
Yee, K. S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat. 1966, 14, 302-307.
[19]
Montgomery, J. M.; Lee, T. W.; Gray, S. K. Theory and modeling of light interactions with metallic nanostructures. J. Phys.: Condens. Matter 2008, 20, 323201.
[20]
Yurkin, M. A.; Hoekstra, A. G. The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer 2007, 106, 558-589.
[21]
Draine, B. T.; Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491-1499.
[22]
Cotton, F. A. Chemical Applications of Group Theory; 3rd ed. John Wiley & Sons: New York, 1990.
[23]
Volatron, F.; Chaquin, P. La théorie des Groupes en Chimie (LMD Chimie); De Boeck Supérieur: Paris, 2017.
[24]
Walton, P. H. Beginning Group Theory for Chemistry; Oxford University Press: Oxford, 1998.
[25]
Awada, C.; Popescu, T.; Douillard, L.; Charra, F.; Perron, A.; Yockell-Lelièvre, H.; Baudrion, A. L.; Adam, P. M.; Bachelot, R. Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation. J. Phys. Chem. C 2012, 116, 14591-14598.
[26]
Mitiche, S.; Marguet, S.; Charra, F.; Douillard, L. Near-field localization of single Au cubes: A group theory description. J. Phys. Chem. C 2017, 121, 4517-4523.
[27]
Xiong, G.; Shao, R.; Peppernick, S. J.; Joly, A. G.; Beck, K. M.; Hess, W. P.; Cai, M.; Duchene, J.; Wang, J. Y.; Wei, W. D. Materials applications of photoelectron emission microscopy. JOM 2010, 62, 90-93.
[28]
Haight, R. A.; Ross, F. M.; Hannon, J. B. Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization; World Scientific: Singapore, 2012.
DOI
[29]
Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-directed oxidation of gold nanoparticles by Au(III) CTAB complexes. J. Phys. Chem. B 2005, 109, 14257-14261.
[30]
Ruan, Q. F.; Shao, L.; Shu, Y. W.; Wang, J. F.; Wu, H. K. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2014, 2, 65-73.
[31]
Young, K. L.; Jones, M. R.; Zhang, J.; Macfarlane, R. J.; Esquivel-Sirvent, R.; Nap, R. J.; Wu, J.; Schatz, G. C.; Lee, B.; Mirkin, C. A. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc. Natl. Acad. Sci. USA 2012, 109, 2240-2245.
[32]
Vig, J.; LeBus, J. UV/Ozone cleaning of surfaces. IEEE Trans. Parts Hybrids Packag .1976, 12, 365-370.
[33]
Douillard, L.; Charra, F.; Fiorini, C.; Adam, P. M.; Bachelot, R.; Kostcheev, S.; Lerondel, G.; De La Chapelle, M. L.; Royer, P. Optical properties of metal nanoparticles as probed by photoemission electron microscopy. J. Appl. Phys .2007, 101, 083518.
[34]
Douillard, L.; Charra, F. High-resolution mapping of plasmonic modes: Photoemission and scanning tunnelling luminescence microscopies. J. Phys. D: Appl. Phys. 2011, 44, 464002.
[35]
Douillard, L.; Charra, F. Photoemission electron microscopy, a tool for plasmonics. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 24-29.
[36]
Schmidt, O.; Bauer, M.; Wiemann, C.; Porath, R.; Scharte, M.; Andreyev, O.; Schönhense, G.; Aeschlimann, M. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 2002, 74, 223-227.
[37]
Losquin, A.; Lummen, T. T. A. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front. Phys .2017, 12, 127301.
[38]
Kubo, A.; Onda, K.; Petek, H.; Sun, Z. J.; Jung, Y. S.; Kim, H. K. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 2005, 5, 1123-1127.
[39]
Bauer, E. Surface Microscopy with Low Energy Electrons; Springer: New York, 2014.
DOI
[40]
Character Tables for Point Groups used in Chemistry[Online], http://gernot-katzers-spice-pages.com/character_tables/index.html (Accessed May 1, 2019).
[41]
Zhang, W. H.; Gallinet, B.; Martin, O. J. F. Symmetry and selection rules for localized surface plasmon resonances in nanostructures. Phys. Rev. B 2010, 81, 233407.
[42]
Kociak, M.; Stéphan, O.; Gloter, A.; Zagonel, L. F.; Tizei, L. H. G; Tencé, M.; March, K.; Blazit, J. D.; Mahfoud, Z.; Losquin, A. et al. Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comp. Rend. Phys .2014, 15, 158-175.
[43]
Nelayah, J.; Gu, L.; Sigle, W.; Koch, C. T.; Pastoriza-Santos, I.; Liz-Marzán, L.; van Aken, P. A. Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Opt. Lett. 2009, 34, 1003-1005.
[44]
Mårsell, E.; Svärd, R.; Miranda, M.; Guo, C.; Harth, A.; Lorek, E.; Mauritsson, J.; Arnold, C. L.; Xu, H.; L’Huillier, A. et al. Direct subwavelength imaging and control of near-field localization in individual silver nanocubes. Appl. Phys. Lett .2015, 107, 201111.
[45]
Gómez-Medina, R.; Yamamoto, N.; Nakano, M.; de Abajo, F. J. G. Mapping plasmons in nanoantennas via cathodoluminescence. New J. Phys .2008, 10, 105009.
[46]
Nicoletti, O.; de la Peña, F.; Leary, R. K.; Holland, D. J.; Ducati, C.; Midgley, P. A. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 2013, 502, 80-84.
[47]
Kim, D. S.; Heo, J.; Ahn, S. H.; Han, S. W.; Yun, W. S.; Kim, Z. H. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. Nano Lett. 2009, 9, 3619-3625.
[48]
Awada, C.; Barbillon, G.; Charra, F.; Douillard, L.; Greffet, J. J. Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy. Phys. Rev. B 2012, 85, 045438.
[49]
Mitiche, S. Plasmonique, un outil pour l’ingénierie du champ électromagnétique aux petites échelles: Manipulation du champ proche optique. Ph. D. Dissertation, Université Paris-Saclay, Gif-sur-Yvette, France, 2018.
[50]
Aeschlimann, M.; Brixner, T.; Fischer, A.; Hensen, M.; Huber, B.; Kilbane, D.; Kramer, C.; Pfeiffer, W.; Piecuch, M.; Thielen, P. Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models. Appl. Phys. B 2016, 122, 199.
[51]
Yang, J. H.; Sun, Q.; Yu, H.; Ueno, K.; Misawa, H.; Gong, Q. H. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes. Photonics Res .2017, 5, 187-193.
[52]
Schwerdtfeger, P.; Wirz, L. N.; Avery, J. The topology of fullerenes. Wiley Interdiscip. Rev.: Comput. Mol. Sci .2015, 5, 96-145.
[53]
Maier, S. A. Plasmonics: Fundamentals and Applications; Springer: New York, 2007.
DOI
[54]
Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, 2006.
DOI
[55]
Katyal, J.; Soni, R. K. Field enhancement around Al nanostructures in the DUV-visible region. Plasmonics 2015, 10, 1729-1740.
[56]
Shautsova, V. I.; Zhuravkov, V. A.; Korolik, O. V.; Novikau, A. G.; Shevchenko, G. P.; Gaiduk, P. I. Effect of interparticle field enhancement in self-assembled silver aggregates on surface-enhanced Raman scattering. Plasmonics 2014, 9, 993-999.
[57]
Schatz, G. C. Using theory and computation to model nanoscale properties. Proc. Natl. Acad. Sci. USA 2007, 104, 6885-6892.
File
12274_2020_2776_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2019
Revised: 23 March 2020
Accepted: 24 March 2020
Published: 16 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Part of the developments regarding the infinite point group symmetry comes out from a fruitful exchange with Paul Walton and Alessandro Paradisi from the University of York, UK. The CEA authors thank them sincerely for their solid contribution. The CEA authors acknowledge financial support by the French National Agency (ANR) in the frame of its program in Nanosciences and Nanotechnologies (PEEM Plasmon Project ANR-08-NANO-034, ANR P2N 2013-Samiré), Nanosciences Île-de-France (PEEM Plasmonics project), the "Triangle de la Physique" (PEPS Project 2012-035T) and the doctoral school "Ecole Doctorale Ondes et Matière (EDOM)" . Support of S. Vassant in the figure preparation was greatly appreciated.

Return