[1]
Hambourger, M.; Moore, G. F.; Kramer, D. M.; Gust, D.; Moore, A. L.; Moore, T. A. Biology and technology for photochemical fuel production. Chem. Soc. Rev. 2009, 38, 25-35.
[2]
Garnett, E. C.; Brongersma, M. L.; Cui, Y.; McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269-295.
[3]
Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of majorana fermions. Nat. Phys. 2012, 8, 887-895.
[4]
Mishra, A.; Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H. et al. Polarization and temperature dependence of photoluminescence from zincblende and Wurtzite InP nanowires. Appl. Phys. Lett. 2007, 91, 263104.
[5]
Pemasiri, K.; Jackson, H. E.; Smith, L. M.; Wong, B. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. Quantum confinement of excitons in Wurtzite InP nanowires. J. Appl. Phys. 2015, 117, 194306.
[6]
Perera, S.; Shi, T.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. Illuminating the second conduction band and spin-orbit energy in single Wurtzite InP nanowires. Nano Lett. 2013, 13, 5367-5372.
[7]
Wallentin, J.; Mergenthaler, K.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K.; Pistol, M. E.; Borgström, M. T. Probing the Wurtzite conduction band structure using state filling in highly doped InP nanowires. Nano Lett. 2011, 11, 2286-2290.
[8]
Signorello, G.; Lörtscher, E.; Khomyakov, P. A.; Karg, S.; Dheeraj, D. L.; Gotsmann, B.; Weman, H.; Riel, H.; Signorello, G.; Lo, E. Inducing a direct-to-pseudodirect bandgap transition in Wurtzite GaAs nanowires with uniaxial stress. Nat. Comm. 2014, 5, 3655.
[9]
Ahtapodov, L.; Todorovic, J.; Olk, P.; Mjåland, T.; Slåttnes, P.; Dheeraj, D. L.; Van Helvoort, A. T. J.; Fimland, B. O.; Weman, H. A story told by a single nanowire: Optical properties of Wurtzite GaAs. Nano Lett. 2012, 12, 6090-6095.
[10]
Raya-Moreno, M.; Rurali, R.; Cartoixà, X. Thermal conductivity for III-V and II-VI semiconductor Wurtzite and zinc-blende polytypes: The role of anharmonicity and phase space. Phys. Rev. Mater. 2019, 3, 084607.
[11]
Wu, S. Y.; Peng, K.; Battiato, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Xie, X.; Yang, J. N.; Xiao, S.; Qian, C. J. et al. Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires. Nano Res. 2019, 12, 2842-2848.
[12]
Faria Junior, P. E.; Tedeschi, D.; De Luca, M.; Scharf, B.; Polimeni, A.; Fabian, J. Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel Wurtzite materials. Phys. Rev. B 2019, 99, 195205.
[13]
Tedeschi, D.; De Luca, M.; Faria Junior, P. E.; Granados Del Águila, A.; Gao, Q.; Tan, H. H.; Scharf, B.; Christianen, P. C. M.; Jagadish, C.; Fabian, J. et al. Unusual spin properties of InP Wurtzite nanowires revealed by Zeeman splitting spectroscopy. Phys. Rev. B 2019, 99, 161204(R).
[14]
Yuan, X. M.; Li, L.; Li, Z. Y.; Wang, F.; Wang, N. Y.; Fu, L.; He, J.; Tan, H. H.; Jagadish, C. Unexpected benefits of stacking faults on the electronic structure and optical emission in Wurtzite GaAs/GaInP core/shell nanowires. Nanoscale 2019, 11, 9207-9215.
[15]
Zhou, C.; Zhang, X. T.; Zheng, K.; Chen, P. P.; Matsumura, S.; Lu, W.; Zou, J. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime. Nanoscale 2019, 11, 6859-6865.
[16]
Spies, M.; Monroy, E. Nanowire photodetectors based on Wurtzite semiconductor heterostructures. Semicond. Sci. Technol. 2019, 34, 053002.
[17]
Battiato, S.; Wu, S. Y.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology 2019, 30, 194004.
[18]
Göransson, D. J. O.; Borgström, M. T.; Huang, Y. Q.; Messing, M. E.; Hessman, D.; Buyanova, I. A.; Chen, W. M.; Xu, H. Q. Measurements of strain and bandgap of coherently epitaxially grown Wurtzite InAsP-InP core-shell nanowires. Nano Lett. 2019, 19, 2674-2681.
[19]
Ren, Y. Z.; Leubner, P.; Verheijen, M. A.; Haverkort, J. E. M.; Bakkers, E. P. A. M. Hexagonal silicon grown from higher order silanes. Nanotechnology 2019, 30, 295602.
[20]
Cartoixà, X.; Palummo, M.; Hauge, H. I. T.; Bakkers, E. P. A. M.; Rurali, R. Optical emission in hexagonal SiGe nanowires. Nano Lett. 2017, 17, 4753-4758.
[21]
Dixit, S.; Shukla, A. K. Optical properties of lonsdaleite silicon nanowires: A promising material for optoelectronic applications. J. Appl. Phys. 2018, 123, 224301.
[22]
Rota, M. B.; Ameruddin, A. S.; Fonseka, H. A.; Gao, Q.; Mura, F.; Polimeni, A.; Miriametro, A.; Tan, H. H.; Jagadish, C.; Capizzi, M. Bandgap energy of Wurtzite InAs nanowires. Nano Lett. 2016, 16, 5197-5203.
[23]
Bao, J. M.; Bell, D. C.; Capasso, F.; Erdman, N.; Wei, D. G.; Fröberg, L.; Mårtensson, T.; Samuelson, L. Nanowire-induced Wurtzite inas thin film on zinc-blende inas substrate. Adv. Mater. 2009, 21, 3654-3658.
[24]
Möller, M.; De Lima, Jr. M. M.; Cantarero, A.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F. Optical emission of InAs nanowires. Nanotechnology 2012, 23, 375704.
[25]
Trägårdh, J.; Persson, A. I.; Wagner, J. B.; Hessman, D.; Samuelson, L. Measurements of the band gap of Wurtzite InAs1-xPx nanowires using photocurrent spectroscopy. J. Appl. Phys. 2007, 101, 123701.
[26]
De, A.; Pryor, C. E. Predicted band structures of III-V semiconductors in the Wurtzite phase. Phys. Rev. B 2010, 81, 155210.
[27]
Faria Junior, P. E.; Campos, T.; Bastos, C. M. O.; Gmitra, M.; Fabian, J.; Sipahi, G. M. Realistic multiband k·p approach from ab initio and spin-orbit coupling effects of InAs and InP in Wurtzite phase. Phys. Rev. B 2016, 93, 235204.
[28]
Gmitra, M.; Fabian, J. First-principles studies of orbital and spin-orbit properties of GaAs, GaSb, InAs, and InSb zinc-blende and Wurtzite semiconductors. Phys. Rev. B 2016, 94, 165202.
[29]
Zanolli, Z.; Fuchs, F.; Furthmüller, J.; Von Barth, U.; Bechstedt, F. Model GW band structure of InAs and GaAs in the Wurtzite phase. Phys. Rev. B 2007, 75, 245121.
[30]
Bechstedt, F.; Belabbes, A. Structure, energetics, and electronic states of III-V compound polytypes. J. Phys. Condens. Matter 2013, 25, 273201.
[31]
Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Hoe Tan, H.; Jagadish, C. Phase perfection in zinc blende and Wurtzite III-V nanowires using basic growth parameters. Nano Lett. 2010, 10, 908-915.
[32]
Alexander-Webber, J. A.; Groschner, C. K.; Sagade, A. A.; Tainter, G.; Gonzalez-Zalba, M. F.; Di Pietro, R.; Wong-Leung, J.; Tan, H. H.; Jagadish, C.; Hofmann, S.; et al. Engineering the photoresponse of InAs nanowires. ACS Appl. Mater. Interfaces 2017, 9, 43993-44000.
[33]
Ullah, A. R.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Micolich, A. P. The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. Nanotechnology 2017, 28, 454001.
[34]
Adachi, S. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles; Springer: Boston, MA, USA, 1999.
[35]
Pavesi, L.; Piazza, F.; Rudra, A.; Carlin, J. F.; Ilegems, M. Temperature dependence of the InP band gap from a photoluminescence study. Phys. Rev. B 1991, 44, 9052-9055.
[36]
Geng, P. J.; Li, W. G.; Zhang, X. H.; Zhang, X. Y.; Deng, Y.; Kou, H. B. A novel theoretical model for the temperature dependence of band gap energy in semiconductors. J. Phys. D: Appl. Phys. 2017, 50, 40LT02.
[37]
O’Donnell, K. P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 2924-2926.
[38]
Kumar, P.; Wade, A.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Choi, Y. J.; Park, J. G. Photocurrent spectroscopy of single CdS nanosheets: Valence band structure and two photon absorption. Appl. Phys. Lett. 2011, 98, 143102.
[39]
Chuang, S. L.; Chang, C. S. k⋅p method for strained Wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491-2504.
[40]
Ehrenreich, H.; Seitz, F.; Turnbull, D. Solid State Physics; Academic Press: New York, USA, 1981.
[41]
Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer: Berlin, Heidelberg, 2004.
[42]
Sun, M. H.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Ning, C. Z. Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation. Nano Lett. 2012, 12, 3378-3384.
[43]
Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 2005, 72, 115308.
[44]
Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in thick semiconducting nanowires. J. Appl. Phys. 2006, 100, 024314.
[45]
Jensen, B. Quantum theory of the complex dielectric constant of free carriers in polar semiconductors. IEEE J. Quantum Electron. 1982, 18, 1361-1370.
[46]
De, A.; Pryor, C. E. Optical dielectric functions of Wurtzite III-V semiconductors. Phys. Rev. B 2012, 85, 125201.
[47]
De Luca, M.; Zilli, A.; Fonseka, H. A.; Mokkapati, S.; Miriametro, A.; Tan, H. H.; Smith, L. M.; Jagadish, C.; Capizzi, M.; Polimeni, A. Polarized light absorption in Wurtzite InP nanowire ensembles. Nano Lett. 2015, 15, 998-1005.
[48]
Kim, D. C.; Dheeraj, D. L.; Fimland, B. O.; Weman, H. Polarization dependent photocurrent spectroscopy of single Wurtzite GaAs/AlGaAs core-shell nanowires. Appl. Phys. Lett. 2013, 102, 142107.