Journal Home > Volume 13 , Issue 6

The epidermal growth factor receptor (EGFR) pathway plays an important role in the progression of colorectal cancer (CRC). Anti-EGFR drugs based on antibodies have been widely used for treating CRC through inducing the cell death pathway. However, the majority of CRC patients will inevitably develop drug-resistance during anti-EGFR drug treatment, which is mainly caused by a point mutation in the KRAS oncogene. We developed a nanoliposomal (NL) particle containing the Cas9 protein and a single-guide RNA (sgRNA) complex (Cas9-RNP), for genomic editing of the KRAS mutation. The NL particle is composed of bio-compatible lipid compounds that can effectively encapsulate Cas9-RNP. By modifying the NL particle to include the appropriate antibody, it can specifically recognize EGFR expressing CRC and effectively deliver the gene-editing complexes. The conditions of NL treatment were optimized using a KRAS mutated CRC in vivo mouse model. Mice with KRAS-mutated CRC showed drug resistance against cetuximab, a therapeutic antibody drug. After treating the mice with the KRAS gene-editing NL particles, the implanted tumors showed a dramatic decrease in size. Our results demonstrated that this genomic editing complex has great potential as a therapeutic carrier system for the treatment of drug-resistant cancer caused by a point mutation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gene editing particle system as a therapeutic approach for drug-resistant colorectal cancer

Show Author's information Jee-Yeon Ryu1You Jung Choi2Eun-Jeong Won1Emmanuel Hui3Ho-Shik Kim2Young-Seok Cho2( )Tae-Jong Yoon1( )
Laboratory of Nanopharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
Moogene Medi Co., Ltd., Seongnam 13488, Republic of Korea

Abstract

The epidermal growth factor receptor (EGFR) pathway plays an important role in the progression of colorectal cancer (CRC). Anti-EGFR drugs based on antibodies have been widely used for treating CRC through inducing the cell death pathway. However, the majority of CRC patients will inevitably develop drug-resistance during anti-EGFR drug treatment, which is mainly caused by a point mutation in the KRAS oncogene. We developed a nanoliposomal (NL) particle containing the Cas9 protein and a single-guide RNA (sgRNA) complex (Cas9-RNP), for genomic editing of the KRAS mutation. The NL particle is composed of bio-compatible lipid compounds that can effectively encapsulate Cas9-RNP. By modifying the NL particle to include the appropriate antibody, it can specifically recognize EGFR expressing CRC and effectively deliver the gene-editing complexes. The conditions of NL treatment were optimized using a KRAS mutated CRC in vivo mouse model. Mice with KRAS-mutated CRC showed drug resistance against cetuximab, a therapeutic antibody drug. After treating the mice with the KRAS gene-editing NL particles, the implanted tumors showed a dramatic decrease in size. Our results demonstrated that this genomic editing complex has great potential as a therapeutic carrier system for the treatment of drug-resistant cancer caused by a point mutation.

Keywords: nanoliposome, clustered regularly interspaced short palindromic repeat and associated Cas9 nuclease (CRISPR/Cas9), KRAS mutation, drug-resistance, colorectal cancer

References(29)

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359-E386.
[2]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V. E.; Zhou, S.; Diaz, L. A.; Kinzler, K. W. Cancer genome landscapes. Science 2013, 339, 1546-1558.
[3]
McCubrey, J. A.; Steelman, L. S.; Chappell, W. H.; Abrams, S. L.; Wong, E. W. T.; Chang, F. M.; Lehmann, B.; Terrian, D. M.; Milella, M.; Tafuri, A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 2007, 1773, 1263-1284.
[4]
Brink, M.; de Goeij, A. F. P. M.; Weijenberg, M. P.; Roemen, G. M. J. M.; Lentjes, M. H. F. M.; Pachen, M. M. M.; Smits, K. M.; de Bruïne, A. P.; Goldbohm, R. A.; van den Brandt, P. A. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 2003, 24, 703-710.
[5]
Morris, V. K.; Lucas, F. A.; Overman, M. J.; Eng, C.; Morelli, M. P.; Jiang, Z. Q.; Luthra, R.; Meric-Bernstam, F.; Maru, D.; Scheet, P. et al. Clinicopathologic characteristics and gene expression analyses of non-KRAS 12/13, RAS-mutated metastatic colorectal cancer. Ann. Oncol .2014, 25, 2008-2014.
[6]
Jonker, D. J.; O'Callaghan, C. J.; Karapetis, C. S.; Zalcberg, J. R.; Tu, D. S.; Au, H. J.; Berry, S. R.; Krahn, M.; Price, T.; Simes, R. J. et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med .2007, 357, 2040-2048.
[7]
Dasari, A.; Messersmith, W. A. New strategies in colorectal cancer: Biomarkers of response to epidermal growth factor receptor monoclonal antibodies and potential therapeutic targets in phosphoinositide 3-kinase and mitogen-activated protein kinase pathways. Clin. Cancer Res .2010, 16, 3811-3818.
[8]
Karapetis, C. S.; Khambata-Ford, S.; Jonker, D. J.; O’Callaghan, C. J.; Tu, D. S.; Tebbutt, N. C.; Simes, R. J.; Chalchal, H.; Shapiro, J. D.; Robitaille, S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med .2008, 359, 1757-1765.
[9]
Segelov, E.; Chan, D.; Shapiro, J.; Price, T. J.; Karapetis, C. S.; Tebbutt, N. C.; Pavlakis, N. The role of biological therapy in metastatic colorectal cancer after first-line treatment: A meta-analysis of randomised trials. Br. J. Cancer 2014, 111, 1122-1231.
[10]
Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D.; ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol .2014, 25, iii1-9.
[11]
Cho, S. W.; Kim, S.; Kim, J. M.; Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol .2013, 31, 230-232.
[12]
Fu, Y. F.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol .2013, 31, 822-826.
[13]
Kim, H.; Kim, S. T.; Ryu, J.; Kang, B. C.; Kim, J. S.; Kim, S. G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun .2017, 8, 14406.
[14]
Liu, J. W.; Jiang, X. M.; Ashley, C.; Brinker, C. J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc .2009, 131, 7567-7569.
[15]
Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2016, 113, 2868-2873.
[16]
Kobayashi, H.; Watanabe, R.; Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2014, 4, 81-89.
[17]
Haeussler, M.; Schönig, K.; Eckert, H.; Eschstruth, A.; Mianné, J.; Renaud, J. B.; Schneider-Maunoury, S.; Shkumatava, A.; Teboul, L.; Kent, J. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol .2016, 17, 148.
[18]
van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol .2014, 116, 1088-1107.
[19]
Cho, E. Y.; Ryu, J. Y.; Lee, H. A. R.; Hong, S. H.; Park, H. S.; Hong, K. S.; Park, S. G.; Kim, H. P.; Yoon, T. J. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J. Nanobiotechnology 2019, 17, 19.
[20]
Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S. Y.; Kwon, S. H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S. et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control Release 2009, 135, 259-267.
[21]
Wang, L. H.; Rothberg, K. G.; Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol .1993, 123, 1107-1117.
[22]
Gao, H. L.; Yang, Z.; Zhang, S.; Cao, S. J.; Shen, S.; Pang, Z. Q.; Jiang, X. G. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep .2013, 3, 2534.
[23]
Kim, W. H.; Yeo, M.; Kim, M. S.; Chun, S. B.; Shin, E. C.; Park, J. H.; Park, I. S. Role of caspase-3 in apoptosis of colon cancer cells induced by nonsteroidal anti-inflammatory drugs. Int. J. Colorectal Dis .2000, 15, 105-111.
[24]
Veluchamy, J. P.; Lopez-Lastra, S.; Spanholtz, J.; Bohme, F.; Kok, N.; Heideman, D. A. M.; Verheul, H. M. W.; Di Santo, J. P.; de Gruijl, T. D.; van der Vliet, H. J. In vivo efficacy of umbilical cord blood stem cell-derived NK cells in the treatment of metastatic colorectal cancer. Front. Immunol .2017, 8, 87.
[25]
Roper, J.; Tammela, T.; Cetinbas, N. M.; Akkad, A.; Roghanian, A.; Rickelt, S.; Almeqdadi, M.; Wu, K.; Oberli, M. A.; Sánchez-Rivera, F. J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol .2017, 35, 569-576.
[26]
Yi, L.; Li, J. M. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim. Biophys. Acta 2016, 1866, 197-207.
[27]
Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control Release 2017, 266, 17-26.
[28]
Staahl, B. T.; Benekareddy, M.; Coulon-Bainier, C.; Banfal, A. A.; Floor, S. N.; Sabo, J. K.; Urnes, C.; Munares, G. A.; Ghosh, A.; Doudna, J. A. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol .2017, 35, 431-434.
[29]
Zuris, J. A.; Thompson, D. B.; Shu, Y. L.; Guilinger, J. P.; Bessen, J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.; Chen, Z. Y.; Liu, D. R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol .2015, 33, 73-80.
File
12274_2020_2773_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2019
Revised: 27 February 2020
Accepted: 23 March 2020
Published: 04 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (Project No. 10047679) of the Ministry of Trade, Industry & Energy (MI, Republic of Korea), partially supported by the GRRC program of Gyeonggi province (GRRC 2016B02, Photonics-Medical Convergence Technology Research Center), and was partly supported by grant (No. 2019R1F1A1058879) from the National Foundation Research of Korea.

Return