Journal Home > Volume 13 , Issue 6

Understanding of thin film growth mechanism is crucial for tailoring film growth behaviors, which in turn determine physicochemical properties of the resulting films. Here, vapor-growth of tungsten carbide overlayers on W(110) surface is investigated by real time low energy electron microscopy. The surface growth is strongly confined by surface steps, which is in contrast with overlayer growth crossing steps in a so-called carpet-like growth mode for example in graphene growth on metal surfaces. Density functional theory calculations indicate that the step-confined growth is caused by the strong interaction of the forming carbide overlayer with the substrate blocking cross-step growth of the film. Furthermore, the tungsten carbide growth within each terrace is facilitated by the supply of carbon atoms from near-surface regions at high temperatures. These findings suggest the critical role of near-surface atom diffusion and step confinement effects in the thin film growth, which may be active in many film growth systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Step-confined thin film growth via near-surface atom migration

Show Author's information Caixia Meng1,2,§Junfeng Gao3,§Rongtan Li1,2Yanxiao Ning1Yuan Chang3Rentao Mu1( )Qiang Fu1( )Xinhe Bao1,4
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100039, China
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
University of Science and Technology of China, Hefei 230026, China

§ Caixia Meng and Junfeng Gao contributed equally to this work.

Abstract

Understanding of thin film growth mechanism is crucial for tailoring film growth behaviors, which in turn determine physicochemical properties of the resulting films. Here, vapor-growth of tungsten carbide overlayers on W(110) surface is investigated by real time low energy electron microscopy. The surface growth is strongly confined by surface steps, which is in contrast with overlayer growth crossing steps in a so-called carpet-like growth mode for example in graphene growth on metal surfaces. Density functional theory calculations indicate that the step-confined growth is caused by the strong interaction of the forming carbide overlayer with the substrate blocking cross-step growth of the film. Furthermore, the tungsten carbide growth within each terrace is facilitated by the supply of carbon atoms from near-surface regions at high temperatures. These findings suggest the critical role of near-surface atom diffusion and step confinement effects in the thin film growth, which may be active in many film growth systems.

Keywords: tungsten carbide, low-energy electron microscopy (LEEM), thin film growth, near-surface dopant, step confinement

References(44)

[1]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[2]
Venables, J. A. Introduction to Surface and Thin Film Processes; Cambridge University Press: Cambridge, 2000.
DOI
[3]
Freund, H. J.; Pacchioni, G. Oxide ultra-thin films on metals: New materials for the design of supported metal catalysts. Chem. Soc. Rev. 2008, 37, 2224-2242.
[4]
Surnev, S.; Fortunelli, A.; Netzer, F. P. Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem. Rev. 2013, 113, 4314-4372.
[5]
Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.
[6]
Bauer, E. Phänomenologische theorie der kristallabscheidung an Oberflächen. I. Z. Kristallogr. 1958, 110, 372-394.
[7]
Fu, Q.; Wagner, T. Diffusion-corrected simultaneous multilayer growth model. Phys. Rev. Lett. 2003, 90, 106105.
[8]
Zhang, Z. Y.; Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 1997, 276, 377-383.
[9]
Lu, J.; Yeo, P. S. E.; Zheng, Y.; Xu, H.; Gan, C. K.; Sullivan, M. B.; Castro Neto, A. H.; Loh, K. P. Step flow versus mosaic film growth in hexagonal boron nitride. J. Am. Chem. Soc. 2013, 135, 2368-2373.
[10]
Henzler, M. Growth of epitaxial monolayers. Surf. Sci. 1996, 357-358, 809-819.
[11]
Matthaei, F.; Heidorn, S.; Boom, K.; Bertram, C.; Safiei, A.; Henzl, J.; Morgenstern, K. Coulomb attraction during the carpet growth mode of NaCl. J. Phys.: Condens. Matter. 2012, 24, 354006.
[12]
Flege, J. I.; Kaemena, B.; Senanayake, S. D.; Höcker, J.; Sadowski, J. T.; Falta, J. Growth mode and oxidation state analysis of individual cerium oxide islands on Ru(0001). Ultramicroscopy 2013, 130, 87-93.
[13]
Aulická, M.; Duchoň, T.; Dvořák, F.; Stetsovych, V.; Beran, J.; Veltruská, K.; Mysliveček, J.; Mašek, K.; Matolín, V. Faceting transition at the oxide-metal interface: (13131) facets on Cu(110) induced by carpet-like ceria overlayer. J. Phys. Chem. C 2015, 119, 1851-1858.
[14]
Günther, S.; Dänhardt, S.; Wang, B.; Bocquet, M. L.; Schmitt, S.; Wintterlin, J. Single terrace growth of graphene on a metal surface. Nano Lett. 2011, 11, 1895-1900.
[15]
Starodub, E.; Maier, S.; Stass, I.; Bartelt, N. C.; Feibelman, P. J.; Salmeron, M.; McCarty, K. F. Graphene growth by metal etching on Ru(0001). Phys. Rev. B 2009, 80, 235422.
[16]
Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655-16660.
[17]
Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed. 2012, 51, 4856-4859.
[18]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[19]
Henkelman, G.; Uberuaga, B. P.; Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
[20]
Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978-9985.
[21]
Bauer, E. Low energy electron microscopy. Rep. Prog. Phys. 1994, 57, 895-938.
[22]
Chung, W. F.; Altman, M. S. Step contrast in low energy electron microscopy. Ultramicroscopy 1998, 74, 237-246.
[23]
Coraux, J.; N'Diaye, A. T.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; Heringdorf, F. J. M. Z.; Van Gastel, R.; Poelsema, B.; Michely, T. Growth of graphene on Ir(111). New J. Phys. 2009, 11, 023006.
[24]
Vang, R. T.; Honkala, K.; Dahl, S.; Vestergaard, E. K.; Schnadt, J.; Lægsgaard, E.; Clausen, B. S.; Nørskov, J. K.; Besenbacher, F. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nat. Mater. 2005, 4, 160-162.
[25]
Goldschmidt, H. J.; Brand, J. A. The tungsten-rich region of the system tungsten-carbon. J. Less Common Met. 1963, 5, 181-194.
[26]
Schmid, K.; Roth, J. Concentration dependent diffusion of carbon in tungsten. J. Nucl. Mater. 2002, 302, 96-103.
[27]
Savio, L.; Vattuone, L.; Rocca, M. Role of steps and of terrace width in gas-surface interaction: O2/Ag(410). Phys. Rev. Lett. 2001, 87, 276101.
[28]
Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009-5015.
[29]
Starodub, E.; Bartelt, N. C.; McCarty, K. F. Oxidation of graphene on metals. J. Phys. Chem. C 2010, 114, 5134-5140.
[30]
Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.
[31]
Meng, C. X.; Li, R. T.; Ning, Y. X.; Pavlovska, A.; Bauer, E.; Fu, Q.; Bao, X. H. Visualizing formation of tungsten carbide model catalyst and its interaction with oxygen. ChemCatChem 2020, 12, 1036-1045.
[32]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[33]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[34]
Rose, M. K.; Borg, A.; Mitsui, T.; Ogletree, D. F.; Salmeron, M. Subsurface impurities in Pd(111) studied by scanning tunneling microscopy. J. Chem. Phys. 2001, 115, 10927-10934.
[35]
Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506-1519.
[36]
Qu, Z. P.; Cheng, M. J.; Huang, W. X.; Bao, X. H. Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J. Catal. 2005, 229, 446-458.
[37]
Nagy, A. J.; Mestl, G.; Herein, D.; Weinberg, G.; Kitzelmann, E.; Schlögl, R. The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system. J. Catal. 1999, 182, 417-429.
[38]
Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86-89.
[39]
Zou, Z. Y.; Carnevali, V.; Patera, L. L.; Jugovac, M.; Cepek, C.; Peressi, M.; Comelli, G.; Africh, C. Operando atomic-scale study of graphene CVD growth at steps of polycrystalline nickel. Carbon 2020, 161, 528-534.
[40]
Ahn, J. G.; Bang, J.; Jung, J.; Kim, Y.; Lim, H. Scanning tunneling microscopic investigations for studying conformational change of underlying Cu(111) and Ni(111) during graphene growth. Surf. Sci. 2020, 693, 121526.
[41]
Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.
[42]
Starodub, E.; Maier, S.; Stass, I.; Bartelt, N. C.; Feibelman, P. J.; Salmeron, M.; McCarty, K. F. Graphene growth by metal etching on Ru(0001). Phys. Rev. B 2009, 80, 235422.
[43]
Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406-411.
[44]
Stradi, D.; Barja, S.; Díaz, C.; Garnica, M.; Borca, B.; Hinarejos, J. J.; Sánchez-Portal, D.; Alcamí, M.; Arnau, A.; De Parga, A. L. V. et al. Role of dispersion forces in the structure of graphene monolayers on Ru surfaces. Phys. Rev. Lett. 2011, 106, 186102.
File
12274_2020_2769_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 February 2020
Revised: 27 February 2020
Accepted: 21 March 2020
Published: 14 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21688102, 21573224, and 21825203), the National Key R&D Program of China (Nos. 2016YFA0200200 and 2017YFB0602205), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020000), and the Start-Up funding of DUT (No. 3005-852069). We thank the computational support from the Supercomputing Center of Dalian University of Technology and National supercomputing center in Tianjin.

Return