AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly sensitive tuning of lattice thermal conductivity of graphene-like borophene by fluorination and chlorination

Tingwei Li1Ge Nie2Qiang Sun1,3( )
Department of Materials Science and Engineering, Peking University, Beijing 100871, China
State Key Laboratory of Coal-based Low Carbon Energy, ENN Science & Development Co., Ltd., Langfang 065001, China
Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Abstract

Boron-based 2D materials are of current interest. However, graphene-like geometry is unstable for B due to the electron deficiency, which can be stabilized by introducing H, F and Cl. Here, using density functional theory combined with phonon Boltzmann transport equation, we perform systematic studies on how the functionalization changes the lattice thermal conductivity (LTC). We find that when going from hydrogenation to fluorination and chlorination, the LTC along zigzag direction changes from 367.6 to 211.3 and 43.0 W/(m·K), while the corresponding values in armchair direction are 279.6, 198.9, and 41.6 W/(m·K), respectively. These huge differences imply the sensitivity of LTC to functionalization, which can be attributed to the enhanced anharmonicity as revealed by analyzing group velocity, Gruneisen parameter, anharmonic scattering rates, and three-phonon scattering space.

Electronic Supplementary Material

Download File(s)
12274_2020_2767_MOESM1_ESM.pdf (1.4 MB)

References

[1]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
[3]
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
[4]
Mortazavi, B.; Shahrokhi, M.; Raeisi, M.; Zhuang, X. Y.; Pereira, L. F. C.; Rabczuk, T. Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors. Carbon 2019, 149, 733-742.
[5]
Di, J.; Xia, J. X.; Ji, M. X.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z. G.; Li, H. M. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B: Environ. 2016, 183, 254-262.
[6]
Ivanovskii, A. L. Graphene-based and graphene-like materials. Russ. Chem. Rev. 2012, 81, 571-605.
[7]
Evans, M. H.; Joannopoulos, J. D.; Pantelides, S. T. Electronic and mechanical properties of planar and tubular boron structures. Phys. Rev. B 2005, 72, 045434.
[8]
Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.
[9]
Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.
[10]
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513-1516.
[11]
Shahrokhi, M. Can fluorine and chlorine functionalization stabilize the graphene like borophene? Comput. Mater. Sci. 2019, 156, 56-66.
[12]
Li, T. W.; Yu, J. B.; Nie, G.; Zhang, B. P.; Sun, Q. The ultralow thermal conductivity and ultrahigh thermoelectric performance of fluorinated Sn2Bi sheet in room temperature. Nano Energy 2020, 67, 104283.
[13]
Kim, J. Y.; Lee, H. J.; Grossman, J. C. Thermal transport in functionalized graphene. ACS Nano 2012, 6, 9050-9057.
[14]
Shenogin, S.; Bodapati, A.; Xue, L.; Ozisik, R.; Keblinski, P. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl. Phys. Lett. 2004, 85, 2229-2231.
[15]
Mortazavi, B.; Makaremi, M.; Shahrokhi, M.; Raeisi, M.; Singh, C. V.; Rabczuk, T.; Pereira, L. F. C. Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale 2018, 10, 3759-3768.
[16]
Jiao, Y. L.; Ma, F. X.; Bell, J.; Bilic, A.; Du, A. J. Two-dimensional boron hydride sheets: High stability, massless dirac fermions, and excellent mechanical properties. Angew. Chem. 2016, 128, 10448-10451.
[17]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[18]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[19]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[20]
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.
[21]
Chaput, L. Direct solution to the linearized phonon Boltzmann equation. Phys. Rev. Lett. 2013, 110, 265506.
[22]
Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-562.
[23]
Gonze, X.; Lee, C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355-10368.
[24]
Wu, L.; Carrete, J.; Katcho, N. A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747-1758.
[25]
Wang, Y.; Wang, J. J.; Wang, W. Y.; Mei, Z. G.; Shang, S. L.; Chen, L. Q.; Liu, Z. K. A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter 2010, 22, 202201.
[26]
Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683-686.
[27]
Lindsay, L.; Broido, D. A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 2010, 82, 115427.
[28]
Sevik, C. Assessment on lattice thermal properties of two-dimensional honeycomb structures: Graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B 2014, 89, 035422.
[29]
Abdullaev, N. A. Grüneisen parameters for layered crystals. Phys. Solid State 2001, 43, 727-731.
[30]
Broido, D. A.; Lindsay, L.; Reinecke, T. L. Ab initio study of the unusual thermal transport properties of boron arsenide and related materials. Phys. Rev. B 2013, 88, 214303.
Nano Research
Pages 1171-1177
Cite this article:
Li T, Nie G, Sun Q. Highly sensitive tuning of lattice thermal conductivity of graphene-like borophene by fluorination and chlorination. Nano Research, 2020, 13(4): 1171-1177. https://doi.org/10.1007/s12274-020-2767-z
Topics:

731

Views

11

Crossref

N/A

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 19 January 2020
Revised: 04 March 2020
Accepted: 21 March 2020
Published: 14 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return