Journal Home > Volume 13 , Issue 4

Here we report a synthetic strategy for controllable construction of yolk-shell and core-shell plasmonic metal@semiconductor hybrid nanocrystals through modulating the kinetics of sulfurization reaction followed by cation exchange. The yielded yolk-shell structured products feature exceptional crystallinity and more importantly, the intimately adjoined and sharp interface between plasmonic metal and semiconductor which facilitates efficient charge carrier communications between them. By exploiting the system composed of Au nanorods and p-type PbS as a demonstration, we show that the Au@PbS yolk-shell nanorods manifest notable improvement in visible and near infrared light absorption compared to the Au@PbS core-shell nanorods as well as hollow PbS nanorods. Moreover, the photocathode constituted by Au@PbS yolk-shell nanorods affords the highest photoelectrochemical activities both under simulated sunlight and λ > 700 nm light irradiation. The superior performance of Au@PbS yolk-shell nanorods is considered arising from the combination of the favorable structural advantages of yolk-shell configuration and the surface plasmon resonance enhancement effect. We envision that the reported synthetic strategy can offer a valuable means to create hybrid nanocrystals with desirable structures and functions that enable to harness the photogenerated charge carriers, including the plasmonic hot holes, in wide-range solar-to-fuel conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

From core-shell to yolk-shell: Keeping the intimately contacted interface for plasmonic metal@semiconductor nanorods toward enhanced near-infrared photoelectrochemical performance

Show Author's information Xiaodong WanJia Liu( )Dong WangYuemei LiHongzhi WangRongrong PanErhuan ZhangXiuming ZhangXinyuan LiJiatao Zhang( )
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Here we report a synthetic strategy for controllable construction of yolk-shell and core-shell plasmonic metal@semiconductor hybrid nanocrystals through modulating the kinetics of sulfurization reaction followed by cation exchange. The yielded yolk-shell structured products feature exceptional crystallinity and more importantly, the intimately adjoined and sharp interface between plasmonic metal and semiconductor which facilitates efficient charge carrier communications between them. By exploiting the system composed of Au nanorods and p-type PbS as a demonstration, we show that the Au@PbS yolk-shell nanorods manifest notable improvement in visible and near infrared light absorption compared to the Au@PbS core-shell nanorods as well as hollow PbS nanorods. Moreover, the photocathode constituted by Au@PbS yolk-shell nanorods affords the highest photoelectrochemical activities both under simulated sunlight and λ > 700 nm light irradiation. The superior performance of Au@PbS yolk-shell nanorods is considered arising from the combination of the favorable structural advantages of yolk-shell configuration and the surface plasmon resonance enhancement effect. We envision that the reported synthetic strategy can offer a valuable means to create hybrid nanocrystals with desirable structures and functions that enable to harness the photogenerated charge carriers, including the plasmonic hot holes, in wide-range solar-to-fuel conversion.

Keywords: core-shell, cation exchange, surface plasmon resonance, yolk-shell, solar-to-fuel conversion

References(61)

[1]
Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70-81.
[2]
Kim, D.; Sakimoto, K. K.; Hong, D.; Yang, P. D. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem., Int. Ed. 2015, 54, 3259-3266.
[3]
Maeda, K.; Mallouk, T. E. Two-dimensional metal oxide Nanosheetsas building blocks for artificial photosynthetic assemblies. Bull. Chem. Soc. Jpn. 2019, 92, 38-54.
[4]
Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315-2337.
[5]
Roy, N.; Suzuki, N.; Terashima, C.; Fujishima, A. Recent improvements in the production of solar fuels: From CO2 reduction to water splitting and artificial photosynthesis. Bull. Chem. Soc. Jpn. 2019, 92, 178-192.
[6]
Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide PerovskitePhotovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036-3103.
[7]
Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109-2125.
[8]
Chen, S. S.; Takata, T.;Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.
[9]
Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893-2939.
[10]
Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
[11]
Liu, X. Q.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y. H.; Zhao, S. Q.; Li, Z.; Lin, Z. Q. Noblemetal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402-434.
[12]
Abe, H.; Liu, J.; Ariga, K. Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater. Today 2016, 19, 12-18.
[13]
Li, A.; Zhu, W. J.; Li, C. C.; Wang, T.; Gong, J. L. Rational design of yolk-shell nanostructures for photocatalysis. Chem. Soc. Rev. 2019, 48, 1874-1907.
[14]
Tian, H.; Liang, J.; Liu, J. Nanoengineeringcarbon spheres as nanoreactorsfor sustainable energy applications. Adv. Mater. 2019, 31, 1903886.
[15]
Tian, H.; Liu, X. Y.; Dong, L. B.;Ren, X. M.; Liu, H.; Price, C. A. H.; Li, Y.; Wang, G. X.; Yang, Q. H.; Liu, J. Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv. Sci. 2019, 6, 1900807.
[16]
Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/Shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578-12591.
[17]
Wang, M. W.; Boyjoo, Y.; Pan, J.; Wang, S. B.; Liu, J. Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. Chin. J. Catal. 2017, 38, 970-990.
[18]
Feng, J. W.; Liu, J.; Cheng, X. Y.; Liu, J. J.; Xu, M.; Zhang, J. T. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS-AgAuS yolk-shell nanocrystalsand their visible light photocatalytic applications. Adv. Sci. 2018, 5, 1700376.
[19]
Chiu, Y. H.; Naghadeh, S. B.; Lindley, S. A.; Lai, T. H.; Kuo, M. Y.; Chang, K. D.; Zhang, J. Z.; Hsu, Y. J. Yolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy 2019, 62, 289-298.
[20]
Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892-1899.
[21]
Shi, X. W.; Lou, Z. Z.; Zhang, P.; Fujitsuka, M.; Majima, T. 3D-array of Au-TiO2 yolk-shell as plasmonicphotocatalyst boosting multi-scattering with enhanced hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 31738-31745.
[22]
Tu, W. G.; Zhou, Y.; Li, H. J.; Li, P.; Zou, Z. G. Au@TiO2 yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via local electrochemical field. Nanoscale 2015, 7, 14232-14236.
[23]
Zhang, N.; Fu, X. Z.; Xu, Y. J. A Facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst. J. Mater. Chem. 2011, 21, 8152-8158.
[24]
You, F. F.; Wan, J. W.; Qi, J.; Mao, D.; Yang, N. L.; Zhang, Q. H.; Gu, L.; Wang, D. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew. Chem., Int. Ed. 2020, 132, 731-734.
[25]
Tian, H.; Huang, F.; Zhu, Y. H.; Liu, S. M.; Han, Y.; Jaroniec, M.; Yang, Q. H.; Liu, H. Y.; Lu, G. Q. M.; Liu, J. The development of yolk-shell-structured Pd&ZnO@Carbonsubmicroreactors with high selectivity and stability. Adv. Funct. Mater. 2018, 28, 1801737.
[26]
Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/ semiconductor composites. Adv. Sci. 2016, 3, 1600024.
[27]
Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274-5309.
[28]
Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the Plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328-5342.
[29]
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.
[30]
Lee, S. U.; Jung, H.; Wi, D. H.; Hong, J. W.; Sung, J.; Choi, S. I.; Han, S. W. Metal-semiconductor yolk-shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A2018, 6, 4068-4078.
[31]
Liu, J.; Feng, J. W.; Gui, J.; Chen, T.; Xu, M.; Wang, H. Z.; Dong, H. F.; Chen, H. L.; Li, X. W.; Wang, L. et al. Metal@Semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy 2018, 48, 44-52.
[32]
Jung, H.; Song, J.; Lee, S.; Lee, Y. W.; Wi, D. H.; Goo, B. S.; Han, S. W. Hierarchical metal-semiconductor-graphene ternary heteronanostructures for plasmon-enhanced wide-range visible-light photocatalysis. J. Mater. Chem. A2019, 7, 15831-15840.
[33]
Patra, B. K.; Khilari, S.; Pradhan, D.; Pradhan, N. Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chem. Mater. 2016, 28, 4358-4366.
[34]
Patra, B. K.; Khilari, S.; Bera, A.; Mehetor, S. K.; Pradhan, D.; Pradhan, N. Chemically filled and Au-coupled BiSbS3 nanorodheterostructures for photoelectrocatalysis. Chem. Mater. 2017, 29, 1116-1126.
[35]
Elbanna, O.; Kim, S.; Fujitsuka, M.; Majima, T. TiO2 mesocrystals composited with gold nanorods for highly efficient visible-NIR-photocatalytic hydrogen production. Nano Energy 2017, 35, 1-8.
[36]
Yang, H.; Wang, Z. H.; Zheng, Y. Y.; He, L. Q.; Zhan, C.; Lu, X. H.; Tian, Z. Q.; Fang, P. P.; Tong, Y. X. Tunable wavelength enhanced photoelectrochemicalcells from surface Plasmon resonance. J. Am. Chem. Soc. 2016, 138, 16204-16207.
[37]
DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonicAu/p-GaNphotocathodes. Nano Lett. 2018, 18, 2545-2550.
[38]
Peng, T. H.; Miao, J. J.; Gao, Z. S.; Zhang, L. J.; Gao, Y.; Fan, C. H.; Li, D. Reactivating catalytic surface: Insights into the role of hot holes in Plasmoniccatalysis. Small 2018, 14, 1703510.
[39]
Zhang, E. H.; Liu, J.; Ji, M. W.; Wang, H. Z.; Wan, X. D.; Rong, H. P.; Chen, W. X.; Liu, J. J.; Xu, M.; Zhang, J. T. Hollow anisotropic semiconductor Nanoprisms with highly crystalline frameworks for high-efficiency photoelectrochemical water splitting. J. Mater. Chem. A2019, 7, 8061-8072.
[40]
De Trizio, L.; Manna, L. Forging colloidal nanostructures via Cationexchange reactions. Chem. Rev. 2016, 116, 10852-10887.
[41]
Beberwyck, B. J.; Surendranath, Y.; Alivisatos, A. P. Cationexchange: A versatile tool for Nanomaterialssynthesis. J. Phys. Chem. C 2013, 117, 19759-19770.
[42]
Tsung, C. K.; Kou, X. S.; Shi, Q. H.; Zhang, J. P.;Yeung, M. H.; Wang, J. F.; Stucky, G. D. Selective shortening of single-crystalline gold Nanorods by mild oxidation. J. Am. Chem. Soc. 2006, 128, 5352-5353.
[43]
Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyolsynthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733-1739.
[44]
Long, R.; Zhou, S.; Wiley, B. J.; Xiong, Y. J. Oxidative etching for controlled synthesis of metal Nanocrystals: Atomic addition and subtraction. Chem. Soc. Rev. 2014, 43, 6288-6310.
[45]
Zhao, Q.; Ji, M. W.;Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient Photocatalytichydrogen evolution. Adv. Mater. 2014, 26, 1387-1392.
[46]
Lien, D. H.; Dong, Z. H.; Retamal, J. R. D.; Wang, H. P.; Wei, T. C.; Wang, D.; He, J. H.; Cui, Y. Resonance-enhanced absorption in hollow Nanoshellspheres with omnidirectional detection and high Responsivity and speed. Adv. Mater. 2018, 30, 1801972.
[47]
Ni, W. H.; Kou, X. S.; Yang, Z.; Wang, J. F. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sectionsof Gold Nanorods. ACS Nano 2008, 2, 677-686.
[48]
Wu, K. F.; Rodriguez-Cordoba, W. E.; Yang, Y.; Lian, T. Q. Plasmon-induced hot electron transfer from the Au Tip to CdSrod in CdS-Au Nanoheterostructures. Nano Lett. 2013, 13, 5255-5263.
[49]
Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. New basic insights into the low hot electron injection efficiency of gold-nanoparticle-photosensitized titanium dioxide. ACS Appl. Mater. Interfaces 2014, 6, 12388-12394.
[50]
Govorov, A. O.; Zhang, H.; Gun’ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C2013, 117, 16616-16631.
[51]
Wang, S. Y.; Gao, Y. Y.; Miao, S.; Liu, T. F.; Mu, L. C.; Li, R. G.; Fan, F. T.; Li, C. Positioning the water oxidation reaction sites in plasmonicphotocatalysts. J. Am. Chem. Soc. 2017, 139, 11771-11778.
[52]
Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOClpossessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513-3521.
[53]
Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Toward enhanced photocatalytic oxygen evolution: Synergetic utilization of plasmonic effect and schottky junction via interfacing facet selection. Adv. Mater. 2015, 27, 3444-3452.
[54]
Pan, R. R.; Liu, J.; Li, Y. M.; Li, X. Y.; Zhang, E. H.; Di, Q. M.; Su, M. Y.; Zhang, J. T. Electronic doping-enabled transition from n- to p-type Conductivity over Au@CdS core-shell nanocrystals toward unassisted photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 23038-23045.
[55]
Yuan, Q. C.; Liu, D.; Zhang, N.; Ye, W.; Ju, H. X.; Shi, L.; Long, R.; Zhu, J. F.; Xiong, Y. J. Noble-metal-free Janus-like structures by Cationexchange for Z-Scheme photocatalytic water splitting under broadband light irradiation. Angew. Chem., Int. Ed. 2017, 56, 4206-4210.
[56]
Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalyticactivity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033-15041.
[57]
Yu, X. J.; Liu, F. Z.; Bi, J. L.; Wang, B.; Yang, S. C. Improving the plasmonic efficiency of the Au nanorod-semiconductor photocatalysis toward water reduction by constructing a unique hot-dog nanostructure. Nano Energy 2017, 33, 469-475.
[58]
Yu, X. J.; Bi, J. L.; Yang, G.; Tao, H. Z.; Yang, S. C. Synergistic effect induced high photothermal performance of Au Nanorod@Cu7S4yolk-shell nanooctahedron particles. J. Phys. Chem. C 2016, 120, 24533-24541.
[59]
Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional Tunability and monodispersity in the seeded growth of gold Nanorods. Nano Lett. 2013, 13, 765-771.
[60]
Wang, Z. L.; Wang, L. Z. Photoelectrode for water splitting: Materials, fabrication and characterization. Sci. China Mater. 2018, 61, 806-821.
[61]
Li, Y. M.; Liu, J.; Li, X. Y.; Wan, X. D.; Pan, R. R.; Rong, H. P.; Liu, J. J.; Chen, W. X.; Zhang, J. T. Evolution of hollow CuInS2 nanododecahedrons via kirkendall effect driven by Cation exchange for efficient solar water splitting. ACS Appl. Mater. Interfaces 2019, 11, 27170-27177.
File
12274_2020_2766_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2020
Revised: 03 March 2020
Accepted: 21 March 2020
Published: 17 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51702016, 51631001, 21801015, 51902023, and 51872030), the Fundamental Research Funds for the Central Universities (No. 2017CX01003) and the Beijing Institute of Technology Research Fund Program for Young Scholars. The characterization results were supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Return