Journal Home > Volume 13 , Issue 6

As the proportion of interfaces increases rapidly in nanomaterials, properties and quality of interfaces hugely impact the performance of advanced semiconductors. Here, the effect of interfaces is explored by comparatively studying two InAs/AlSb superlattices with and without the thin InAsSb layers inserted inside each InAs layers. Through strain mapping, it indicates that the addition of interfaces leads to an increase of local strain both near interfaces and inside layers. Meantime, owing to the creation of hole potential wells within the original electron wells, the charge distribution undergoes an extra electron-hole alternating arrangement in the structure with inserted layers than the uninserted counterpart. Such a feature is verified to enhance electron-hole wave function overlap by theoretical simulations, which is a must for better optical performance. Furthermore, with an elaborate design of the inserted layers, the wave function overlap could be boosted without sacrificing other key device performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap

Show Author's information Chenyuan Cai1Yunhao Zhao1Faran Chang2Xuebing Zhao1Liting Yang1Chongyun Liang1Guowei Wang2Zhichuan Niu2Yi Shi3Xianhu Liu4Yuesheng Li1Renchao Che1( )
Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China

Abstract

As the proportion of interfaces increases rapidly in nanomaterials, properties and quality of interfaces hugely impact the performance of advanced semiconductors. Here, the effect of interfaces is explored by comparatively studying two InAs/AlSb superlattices with and without the thin InAsSb layers inserted inside each InAs layers. Through strain mapping, it indicates that the addition of interfaces leads to an increase of local strain both near interfaces and inside layers. Meantime, owing to the creation of hole potential wells within the original electron wells, the charge distribution undergoes an extra electron-hole alternating arrangement in the structure with inserted layers than the uninserted counterpart. Such a feature is verified to enhance electron-hole wave function overlap by theoretical simulations, which is a must for better optical performance. Furthermore, with an elaborate design of the inserted layers, the wave function overlap could be boosted without sacrificing other key device performances.

Keywords: interface engineering, energy band alignment, charge distribution, strain distribution, semiconductor multilayer nanostructures

References(34)

[1]
Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.
[2]
Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141-153.
[3]
Cao, S. W.; Yu, J. G. Carbon-based H2-production photocatalytic materials. J. Photochem. Photobiol. C 2016, 27, 72-99.
[4]
Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater. 2013, 25, 6158-6183.
[5]
El-Ballouli, A. O.; Alarousu, E.; Bernardi, M.; Aly, S. M.; Lagrow, A. P.; Bakr, O. M.; Mohammed, O. F. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface. J. Am. Chem. Soc. 2014, 136, 6952-6959.
[6]
Yang, H. H.; Fan, W. G.; Vaneski, A.; Susha, A. S.; Teoh, W. Y.; Rogach, A. L. Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: Intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 2012, 22, 2821-2829.
[7]
Wei, Y. J.; Hood, A.; Yau, H.; Gin, A.; Razeghi, M.; Tidrow, M. Z.; Nathan, V. Uncooled operation of type-II InAs/GaSb superlattice photodiodes in the midwavelength infrared range. Appl. Phys. Lett. 2005, 86, 233106.
[8]
Jiao, S.; Shen, Q.; Mora-Seró, I.; Wang, J.; Pan, Z. X.; Zhao, K.; Kuga, Y.; Zhong, X. H.; Bisquert, J. Band engineering in core/shell ZnTe/CdSe For photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 2015, 9, 908-915.
[9]
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[10]
Choi, W. B.; Bae, E.; Kang, D. K.; Chae, S.; Cheong, B. H.; Ko, J. H.; Lee, E.; Park, W. J. Aligned carbon nanotubes for nanoelectronics. Nanotechnology 2004, 15, S512-S516.
[11]
Kim, H.; Meng, Y. F.; Klem, J. F.; Hawkins, S. D.; Kim, J. K.; Zuo, J. M. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb. J. Appl. Phys. 2018, 123, 161521.
[12]
Wu, B.; Fu, K. W.; Yantara, N.; Xing, G. C.; Sun, S. Y.; Sum, T. C.; Mathews, N. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv. Energy Mater. 2015, 5, 1500829.
[13]
Li, X.; Yu, J. G.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485-2534.
[14]
Meng, C.; Ling, T.; Ma, T. Y.; Wang, H.; Hu, Z. P.; Zhou, Y.; Mao, J.; Du, X. W.; Jaroniec, M.; Qiao, S. Z. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29, 1604607.
[15]
Park, Y. S.; Bae, W. K.; Baker, T.; Lim, J.; Klimov, V. I. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015, 15, 7319-7328.
[16]
Cai, C. Y.; Zhao, Y. H.; Xie, S. W.; Zhao, X. B.; Zhang, Y.; Xu, Y. Q.; Liang, C. Y.; Niu, Z. C.; Shi, Y.; Li, Y. S. et al. Heterointerface-driven band alignment engineering and its impact on macro-performance in semiconductor multilayer nanostructures. Small 2019, 15, 1900837.
[17]
Lu, J.; Luna, E.; Aoki, T.; Steenbergen, E. H.; Zhang, Y. H.; Smith, D. J. Evaluation of antimony segregation in InAs/InAs1-xSbx type-II superlattices grown by molecular beam epitaxy. J. Appl. Phys. 2016, 119, 095702.
[18]
Wang, Y. Q.; Wang, Z. L.; Brown, T.; Brown, A.; May, G. Thermodynamic analysis of anion exchange during heteroepitaxy. J. Cryst. Growth 2002, 242, 5-14.
[19]
Bi, H.; Han, X.; Liu, L.; Zhao, Y. H.; Zhao, X. B.; Wang, G. W.; Xu, Y. Q.; Niu, Z. C.; Shi, Y.; Che, R. C. Atomic mechanism of interfacial-controlled quantum efficiency and charge migration in InAs/GaSb superlattice. ACS Appl. Mater. Interfaces 2017, 9, 26642-26647.
[20]
Nicolaï, J.; Warot-Fonrose, B.; Gatel, C.; Teissier, R.; Baranov, A. N.; Magen, C.; Ponchet, A. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers. J. Appl. Phys. 2015, 118, 035305.
[21]
Chen, Z. W.; Jian, Z. Z.; Li, W.; Chang, Y. J.; Ge, B. H.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M. X.; Snyder, G. J. et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 2017, 29, 1606768.
[22]
Yao, Y.; Li, C.; Huo, Z. L.; Liu, M.; Zhu, C. X.; Gu, C. Z.; Duan, X. F.; Wang, Y. G.; Gu, L.; Yu, R. C. In situ electron holography study of charge distribution in high-κ charge-trapping memory. Nat. Commun. 2013, 4, 2764.
[23]
Chang, Y. C.; Schulman, J. N. Interband optical transitions in GaAs-Ga1-xAlxAs and InAs-GaSb superlattices. Phys. Rev. B 1985, 31, 2069-2079.
[24]
Kroemer, H. The 6.1Å family (InAs, GaSb, AlSb) and its heterostructures: A selective review. Phys. E 2004, 20, 196-203.
[25]
Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146.
[26]
Mahalingam, K.; Haugan, H. J.; Brown, G. J.; Eyink, K. G. Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM. Ultramicroscopy 2013, 127, 70-75.
[27]
Haugan, H. J.; Brown, G. J.; Elhamri, S.; Mitchel, W. C.; Mahalingam, K.; Kim, M.; Noe, G. T.; Ogden, N. E.; Kono, J. Impact of growth temperature on InAs/GaInSb strained layer superlattices for very long wavelength infrared detection. Appl. Phys. Lett. 2012, 101, 171105.
[28]
Ting, D. Z. Y.; Soibel, A.; Höglund, L.; Nguyen, J.; Hill, C. J.; Khoshakhlagh, A.; Gunapala, S. D. Type-II superlattice infrared detectors. Semicond. Semimet .2011, 84, 1-57.
[29]
Gardner, G. C.; Fallahi, S.; Watson, J. D.; Manfra, M. J. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility > 35×106 cm2/V s in AlGaAs/GaAs quantum wells grown by MBE. J. Cryst. Growth 2016, 441, 71-77.
[30]
Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2 /V s. J. Cryst. Growth 2009, 311, 1658-1661.
[31]
Mahalingam, K.; Haugan, H. J.; Brown, G. J.; Aronow, A. J. Strain analysis of compositionally tailored interfaces in InAs/GaSb superlattices. Appl. Phys. Lett. 2013, 103, 211605.
[32]
Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y. H.; Johnson, S. R. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry. Appl. Phys. Lett. 2015, 106, 061907.
[33]
Ishida, A.; Naruse, K.; Nakashima, S.; Takano, Y.; Du, S. Q.; Hirakawa, K. Interband absorption in PbTe/PbSnTe-based type-II superlattices. Appl. Phys. Lett. 2018, 113, 072103.
[34]
Steenbergen, E. H.; Connelly, B. C.; Metcalfe, G. D.; Shen, H.; Wraback, M.; Lubyshev, D.; Qiu, Y.; Fastenau, J. M.; Liu, A. W. K.; Elhamri, S. et al. Temperature-dependent minority carrier lifetimes of InAs/InAs1-xSbx type-II superlattices. In Proceedings of 8512, Infrared Sensors, Devices, and Applications II, San Diego, California, USA, 2012.
File
12274_2020_2764_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 December 2019
Revised: 23 February 2020
Accepted: 21 March 2020
Published: 30 April 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2018YFA0209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581).

Return