Journal Home > Volume 13 , Issue 4

In this work, we quantitatively studied the intertube coupling of different (n, m)-sorted semiconducting single-wall carbon nanotubes (SWCNTs) on their photoluminescence (PL) efficiencies by precisely tuning the ratio of (9, 4) and (6, 5) SWCNTs in the mixture. A significant decrease in the PL intensity of (9, 4) SWCNTs was observed after mixing with (6, 5) species when fixing the (9, 4) concentration, which was confirmed to be caused by the absorption of incident photons and reabsorption of the emitted photons by the added (6, 5) species. By contrast, a similar decrease in the PL intensity of (6, 5) SWCNTs was also observed after mixing with the larger-diameter (9, 4) species. Different from that of (9, 4) SWCNTs, the PL decrease of (6, 5) SWCNTs was found to originate not only from photon absorption and reabsorption by the (9, 4) species but also from one-way exciton energy transfer (EET) from the (6, 5) SWCNTs to the larger-diameter (9, 4) SWCNTs. Both the experimental results and numerical simulations further demonstrated that increasing the concentration of mixed (9, 4) SWCNTs would enhance the effects of photon absorption and reabsorption and EET on the PL intensity of (6, 5) SWCNTs quantified by the decrease ratio of the (6, 5) PL intensity. Meanwhile, the influence of EET was found to be always weaker than that of photon absorption and reabsorption. We proposed that the observed EET between isolated SWCNTs in a surfactant solution is derived from their proximity due to Brownian motion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n, m) carbon nanotubes dispersed in solution

Show Author's information Shilong Li1,3,4Dehua Yang1,3,4Jiaming Cui1Yanchun Wang1,4Xiaojun Wei1,4,5( )Weiya Zhou1,3,4,5Hiromichi Kataura6Sishen Xie1,3,4,5Huaping Liu1,2,3,4,5( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan

Abstract

In this work, we quantitatively studied the intertube coupling of different (n, m)-sorted semiconducting single-wall carbon nanotubes (SWCNTs) on their photoluminescence (PL) efficiencies by precisely tuning the ratio of (9, 4) and (6, 5) SWCNTs in the mixture. A significant decrease in the PL intensity of (9, 4) SWCNTs was observed after mixing with (6, 5) species when fixing the (9, 4) concentration, which was confirmed to be caused by the absorption of incident photons and reabsorption of the emitted photons by the added (6, 5) species. By contrast, a similar decrease in the PL intensity of (6, 5) SWCNTs was also observed after mixing with the larger-diameter (9, 4) species. Different from that of (9, 4) SWCNTs, the PL decrease of (6, 5) SWCNTs was found to originate not only from photon absorption and reabsorption by the (9, 4) species but also from one-way exciton energy transfer (EET) from the (6, 5) SWCNTs to the larger-diameter (9, 4) SWCNTs. Both the experimental results and numerical simulations further demonstrated that increasing the concentration of mixed (9, 4) SWCNTs would enhance the effects of photon absorption and reabsorption and EET on the PL intensity of (6, 5) SWCNTs quantified by the decrease ratio of the (6, 5) PL intensity. Meanwhile, the influence of EET was found to be always weaker than that of photon absorption and reabsorption. We proposed that the observed EET between isolated SWCNTs in a surfactant solution is derived from their proximity due to Brownian motion.

Keywords: photoluminescence, quantitative analysis, single-wall carbon nanotubes, intertube coupling

References(50)

[1]
O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593-596.
[2]
Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361-2366.
[3]
Lefebvre, J.; Austing, D. G.; Bond, J.; Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 2006, 6, 1603-1608.
[4]
Kiowski, O.; Arnold, K.; Lebedkin, S.; Hennrich, F.; Kappes, M. M. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 99, 237402.
[5]
Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M. et al. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010, 4, 2748-2754.
[6]
Jakubka, F.; Grimm, S. B.; Zakharko, Y.; Gannott, F.; Zaumseil, J. Trion electroluminescence from semiconducting carbon nanotubes. ACS Nano 2014, 8, 8477-8486.
[7]
Wildöer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59-62.
[8]
Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 115426.
[9]
Luo, Z. T.; Pfefferle, L. D.; Haller, G. L.; Papadimitrakopoulos, F. (n,m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J. Am. Chem. Soc. 2006, 128, 15511-15516.
[10]
Li, X. L.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770-15771.
[11]
Okazaki, T.; Saito, T.; Matsuura, K.; Ohshima, S.; Yumura, M.; Oyama, Y.; Saito, R.; Iijima, S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem. Phys. Lett. 2006, 420, 286-290.
[12]
Sarti, F.; Biccari, F.; Fioravanti, F.; Torrini, U.; Vinattieri, A.; Derycke, V.; Gurioli, M.; Filoramo, A. Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths. Nano Res. 2016, 9, 2478-2486.
[13]
Jorio, A.; Fantini, C.; Pimenta, M. A.; Heller, D. A.; Strano, M. S.; Dresselhaus, M. S.; Oyama, Y.; Jiang, J.; Saito, R. Carbon nanotube population analysis from Raman and photoluminescence intensities. Appl. Phys. Lett. 2006, 88, 023109.
[14]
Tsyboulski, D. A.; Rocha, J. D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 2007, 7, 3080-3085.
[15]
Ju, S. Y.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat. Nanotechnol. 2008, 3, 356-362.
[16]
Wei, X. J.; Tanaka, T.; Li, S. L.; Tsuzuki, M.; Wang, G. W.; Yao, Z. H.; Li, L. H.; Yomogida, Y.; Hirano, A.; Liu, H. P. et al. Photoluminescence quantum yield of single-wall carbon nanotubes corrected for the photon reabsorption effect. Nano Lett. 2020, 20, 410-417.
[17]
Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86-92.
[18]
Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779-793.
[19]
Yomogida, Y.; Tanaka, T.; Zhang, M. F; Yudasaka, M.; Wei, X. J.; Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun. 2016, 7, 12056.
[20]
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85-120.
[21]
Ahn, T. S.; Al-Kaysi, R. O.; Müller, A. M.; Wentz, K. M.; Bardeen, C. J. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. Rev. Sci. Instrum. 2007, 78, 086105.
[22]
Semonin, O. E.; Johnson, J. C.; Luther, J. M.; Midgett, A. G.; Nozik, A. J.; Beard, M. C. Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 2010, 1, 2445-2450.
[23]
Zhang, N.; Dai, D. J.; Zhang, W. X.; Fan, J. Y. Photoluminescence and light reabsorption in SiC quantum dots embedded in binary-polyelectrolyte solid matrix. J. Appl. Phys. 2012, 112, 094315.
[24]
Torrens, O. N.; Milkie, D. E.; Zheng, M.; Kikkawa, J. M. Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. Nano Lett. 2006, 6, 2864-2867.
[25]
Tan, P. H.; Rozhin, A. G.; Hasan, T.; Hu, P.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 2007, 99, 137402.
[26]
Koyama, T.; Miyata, Y.; Asada, Y.; Shinohara, H.; Kataura, H.; Nakamura, A. Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett. 2010, 1, 3243-3248.
[27]
Koyama, T.; Asaka, K.; Hikosaka, N.; Kishida, H.; Saito, Y.; Nakamura, A. Ultrafast exciton energy transfer in bundles of single-walled carbon nanotubes. J. Phys. Chem. Lett. 2011, 2, 127-132.
[28]
Fantini, C.; Cassimiro, J.; Peressinotto, V. S. T.; Plentz, F.; Souza Filho, A. G.; Furtado, C. A.; Santos, A. P. Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chem. Phys. Lett. 2009, 473, 96-101.
[29]
Tanaka, T.; Jin, H. H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497-1500.
[30]
Liu, H. P.; Tanaka, T.; Urabe, Y.; Kataura, H. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett. 2013, 13, 1996-2003.
[31]
Liu, H. P; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.
[32]
Wei, X. J.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun. 2016, 7, 12899.
[33]
Zeng, X.; Yang, D. H.; Liu, H. P.; Zhou, N. G.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S.; Kataura, H. Detecting and tuning the interactions between surfactants and carbon nanotubes for their high-efficiency structure separation. Adv. Mater. Interfaces 2018, 5, 1700727.
[34]
Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res. 2009, 2, 69-77.
[35]
Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443-450.
[36]
Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250-253.
[37]
Tu, X. M.; Zheng, M. A DNA-based approach to the carbon nanotube sorting problem. Nano Res. 2008, 1, 185-194.
[38]
Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235-1238.
[39]
Wang, F.; Sfeir, M. Y.; Huang, L. M.; Huang, X. M. H.; Wu, Y.; Kim, J.; Hone, J.; O'Brien, S.; Brus, L. E.; Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 2006, 96, 167401.
[40]
Chou, S. G.; Plentz, F.; Jiang, J.; Saito, R.; Nezich, D.; Ribeiro, H. B.; Jorio, A.; Pimenta, M. A.; Samsonidze, G. G.; Santos, A. P. et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett. 2005, 94, 127402.
[41]
Mäntele, W.; Deniz, E. UV-Vis absorption spectroscopy: Lambert-beer reloaded. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 965-968.
[42]
Wei, X. J.; Tanaka, T.; Akizuki, N.; Miyauchi, Y.; Matsuda, K.; Ohfuchi, M.; Kataura, H. Single-chirality separation and optical properties of (5,4) single-wall carbon nanotubes. J. Phys. Chem. C 2016, 120, 10705-10710.
[43]
Qian, H. H.; Georgi, C.; Anderson, N.; Green, A. A.; Hersam, M. C.; Novotny, L.; Hartschuh, A. Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 2008, 8, 1363-1367.
[44]
Hernández-Martínez, P. L.; Govorov, A. O.; Demir, H. V. Generalized theory of Förster-type nonradiative energy transfer in nanostructures with mixed dimensionality. J. Phys. Chem. C 2013, 117, 10203-10212.
[45]
Hernández-Martínez, P. L.; Govorov, A. O.; Demir, H. V. Förster-type nonradiative energy transfer for assemblies of arrayed nanostructures: Confinement dimension vs. stacking dimension. J. Phys. Chem. C 2014, 118, 4951-4958.
[46]
Davoody, A. H.; Karimi, F.; Arnold, M. S.; Knezevic, I. Theory of exciton energy transfer in carbon nanotube composites. J. Phys. Chem. C 2016, 120, 16354-16366.
[47]
Feitelson, J. Resonance transfer of electronic excitation energy in solution. I. influence of Brownian motion. J. Chem. Phys. 1996, 44, 1497-1500.
[48]
Grechko, M.; Ye, Y. M.; Mehlenbacher, R. D.; McDonough, T. J.; Wu, M. Y.; Jacobberger, R. M.; Arnold, M. S.; Zanni, M. T. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano 2014, 8, 5383-5394.
[49]
Olaya-Castro, A.; Scholes, G. D. Energy transfer from Förster-Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 2011, 30, 49-77.
[50]
Mehlenbacher, R. D.; McDonough, T. J.; Grechko, M.; Wu, M. Y.; Arnold, M. S.; Zanni, M. T. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nat. Commun. 2015, 6, 6732.
File
12274_2020_2762_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2020
Revised: 05 March 2020
Accepted: 16 March 2020
Published: 13 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is financially supported by the National Key R&D Program of China (no. 2018YFA0208402), the National Natural Science Foundation of China (nos. 51820105002, 11634014, and 51872320), the Youth Innovation Promotion Association of CAS (No. 2020005), and the Key Research Program of Frontier Sciences, CAS (no. QYZDBSSW-SYS028).

Return