Journal Home > Volume 13 , Issue 4

High-performance Nd2Fe14B magnets have been widely required in various fields recently due to the lightweight and miniaturization of devices. In this work, we synthesize Nd2Fe14B nanostructures with tunable magnetic properties through surfactant-assisted high energy ball milling (SAHEBM) process, achieving prominently enhanced coercivity by forming non-magnetic layers as grain boundary phase. When the reduction annealing process was carried out as pellet with Ca, the coercivity increased from 0.8 kOe to over 3 kOe as Nd2Fe14B powder, which is proved to be the contribution of the chemical diffusion of Nd elements and the formation of Nd-rich layer as magnetic insulating medium. In addition, two-dimensional graphene oxide (GO) was employed to build extra grain boundary, by which the coercivity of the core@dual-shell structure can achieve up to 8 kOe, tenfold of the original sample. The intrinsic mechanism indicated that the Nd-diffusion induced Nd-rich phase along with the reduced GO in the system could form non-magnetic layer as grain boundary and magnetically isolate the adjacent grains, significantly enhancing the exchange coupling effect. This work markedly opens up an effective approach for the chemical preparation of high-performance Nd2Fe14B nanostructured magnets, especially after post treatment, and gives an insight on the interactions at nanoscale.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chemical synthesis and coercivity enhancement of Nd2Fe14B nanostructures mediated by non-magnetic layer

Show Author's information Kai Zhu1,2Junjie Xu1Xiaobai Wang1Wei Li1Kesong Tian1Yanglong Hou1,2( )
Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Centre for Engineering Science and Advanced Technology, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

Abstract

High-performance Nd2Fe14B magnets have been widely required in various fields recently due to the lightweight and miniaturization of devices. In this work, we synthesize Nd2Fe14B nanostructures with tunable magnetic properties through surfactant-assisted high energy ball milling (SAHEBM) process, achieving prominently enhanced coercivity by forming non-magnetic layers as grain boundary phase. When the reduction annealing process was carried out as pellet with Ca, the coercivity increased from 0.8 kOe to over 3 kOe as Nd2Fe14B powder, which is proved to be the contribution of the chemical diffusion of Nd elements and the formation of Nd-rich layer as magnetic insulating medium. In addition, two-dimensional graphene oxide (GO) was employed to build extra grain boundary, by which the coercivity of the core@dual-shell structure can achieve up to 8 kOe, tenfold of the original sample. The intrinsic mechanism indicated that the Nd-diffusion induced Nd-rich phase along with the reduced GO in the system could form non-magnetic layer as grain boundary and magnetically isolate the adjacent grains, significantly enhancing the exchange coupling effect. This work markedly opens up an effective approach for the chemical preparation of high-performance Nd2Fe14B nanostructured magnets, especially after post treatment, and gives an insight on the interactions at nanoscale.

Keywords: grain boundary, graphene oxide, Nd2Fe14B nanostructures, chemical reduction, diffusion process, coercivity enchantment

References(47)

[1]
Hou, Y. L.; Sellmyer, D. J. Magnetic nanomaterials: Fundamentals, synthesis and applications; Wiley: New York, 2017.
DOI
[2]
Sagawa, M.; Fujimura, S.; Togawa, N.; Yamamoto, H.; Matsuura, Y. New material for permanent magnets on a base of Nd and Fe (invited). J. Appl. Phys. 1984, 55, 2083-2087.
[3]
Chen, F. G.; Zhang, T. Q.; Zhang, W. H.; Zhang, L. T.; Jin, Y. X. Dependence of the demagnetization behavior on the direction of grain boundary diffusion in sintered Nd-Fe-B magnets. J. Magn. Magn. Mater. 2018, 465, 392-398.
[4]
Zeng, H. X.; Liu, Z. W.; Li, W.; Zhang, J. S.; Zhao, Z.; Zhong, X. C.; Yu, H. Y.; Guo, B. C. Significantly enhancing the coercivity of NdFeB magnets by ternary Pr-Al-Cu alloys diffusion and understanding the elements diffusion behavior. J. Magn. Magn. Mater. 2019, 471, 97-104.
[5]
Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821-842.
[6]
Yue, M.; Zhang, X. Y.; Liu, J. P. Fabrication of bulk nanostructured permanent magnets with high energy density: Challenges and approaches. Nanoscale 2017, 9, 3674-3697.
[7]
Skokov, K. P.; Gutfleisch, O. Heavy rare earth free, free rare earth and rare earth free magnets - Vision and reality. Scripta Mater. 2018, 154, 289-294.
[8]
Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Balasubramanian, B.; Sellmyer, D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018, 158, 118-137.
[9]
Pathak, A. K.; Khan, M.; Gschneidner, K. A., Jr.; McCallum, R. W.; Zhou, L.; Sun, K. W.; Dennis, K. W.; Zhou, C.; Pinkerton, F. E.; Kramer, M. J. et al. Cerium: An unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets. Adv. Mater. 2015, 27, 2663-2667.
[10]
Jiang, Q. Z.; Zhong, Z. C. Research and development of Ce-containing Nd2Fe14B-type alloys and permanent magnetic materials. J. Mater. Sci. Technol. 2017, 33, 1087-1096.
[11]
Qiao, S.; Yang, Z. Y.; Xu, J. J.; Wang, X. B.; Yang, J. B.; Hou, Y. L. Chemical synthesis, structure and magnetic properties of Co nanorods decorated with Fe3O4 nanoparticles. Sci. China Mater. 2018, 61, 1614-1622.
[12]
Wang, C. H.; Levin, A. A.; Karel, J.; Fabbrici, S.; Qian, J. F.; ViolBarbosa, C. E.; Ouardi, S.; Albertini, F.; Schnelle, W.; Rohlicek, J. et al. Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles. Nano Res. 2017, 10, 3421-3433.
[13]
Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500-1519.
[14]
Lei, W. J.; Yu, Y. S.; Yang, W. W.; Feng, M.; Li, H. B. A general strategy for synthesizing high-coercivity L10-FePt nanoparticles. Nanoscale 2017, 9, 12855-12861.
[15]
Yang, W. W.; Lei, W. J.; Yu, Y. S.; Zhu, W. L.; George, T. A.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. From FePt-Fe3O4 to L10-FePt-Fe nanocomposite magnets with a gradient interface. J. Mater. Chem. C 2015, 3, 7075-7080.
[16]
Lei, W. J.; Xu, J. J.; Yu, Y. S.; Yang, W. W.; Hou, Y. L.; Chen, D. F. Halide ion-mediated synthesis of L10-FePt nanoparticles with tunable magnetic properties. Nano Lett. 2018, 18, 7839-7844.
[17]
Lei, W. J.; Yu, Y. S.; Yang, W. W. Cu induced low temperature ordering of fct-FePtCu nanoparticles prepared by solution phase synthesis. J. Mater. Chem. C 2019, 7, 11632-11638.
[18]
Liu, F.; Zhu, J. H.; Yang, W. L.; Dong, Y. H.; Hou, Y. L.; Zhang, C. Z.; Yin, H.; Sun, S. H. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem., Int. Ed. 2014, 53, 2176-2180.
[19]
Liu, F.; Hou, Y. L.; Gao, S. Exchange-coupled nanocomposites: Chemical synthesis, characterization and applications. Chem. Soc. Rev. 2014, 43, 8098-8113.
[20]
Han, G. H.; Liu, Y. Q.; Yang, W. W.; Geng, S.; Cui, W. B.; Yu, Y. S. Fabrication, characterization, and magnetic properties of exchange-coupled porous BaFe8Al4O19/Co0.6Zn0.4Fe2O4 nanocomposite magnets. Nanoscale 2019, 11, 10629-10635.
[21]
Hou, Y.; Xu, Z.; Peng, S.; Rong, C.; Liu, J. P.; Sun, S. A facile synthesis of SmCo5 magnets from Core/Shell Co/Sm2O3 nanoparticles. Adv. Mater. 2007, 19, 3349-3552.
[22]
Hou, Y. L.; Sun, S. H.; Rong, C. B.; Liu, J. P. SmCo5/Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Appl. Phys. Lett. 2007, 91, 153117.
[23]
Yang, C.; Hou, Y. L. Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. Rare Metals 2013, 32, 105-112.
[24]
Yu, L. Q.; Yang, C.; Hou, Y. L. Controllable Nd2Fe14B/α-Fe nanocomposites: Chemical synthesis and magnetic properties. Nanoscale 2014, 6, 10638-10642.
[25]
Yu, L. Q.; Zhang, Y. P.; Yang, Z.; He, J. D.; Dong, K. T.; Hou, Y. Chemical synthesis of Nd2Fe14B/Fe3B nanocomposites. Nanoscale 2016, 8, 12879-12882.
[26]
Zhu, K.; Ju, Y. M.; Xu, J. J.; Yang, Z. Y.; Gao, S.; Hou, Y. L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 2018, 51, 404-413.
[27]
Deheri, P. K.; Swaminathan, V.; Bhame, S. D.; Liu, Z. W.; Ramanujan, R. V. Sol-gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Chem. Mater. 2010, 22, 6509-6517.
[28]
Jeong, J. H.; Ma, H. X.; Kim, D.; Kim, C. W.; Kim, I. H.; Ahn, J. W.; Kim, D. S.; Kang, Y. S. Chemical synthesis of Nd2Fe14B hard phase magnetic nanoparticles with an enhanced coercivity value: Effect of CaH2 amount on the magnetic properties. New J. Chem. 2016, 40, 10181-10186.
[29]
Jadhav, A. P.; Hussain, A.; Lee, J. H.; Baek, Y. K.; Choi, C. J.; Kang, Y. S. One pot synthesis of hard phase Nd2Fe14B nanoparticles and Nd2Fe14B/α-Fe nanocomposite magnetic materials. New J. Chem. 2012, 36, 2405-2411.
[30]
Rahimi, H.; Ghasemi, A.; Mozaffarinia, R. Controlling of saturation of magnetization of Nd-Fe-B nanoparticles fabricated by chemical method. J. Supercond. Nov. Magn. 2017, 30, 475-481.
[31]
Pal, A.; Gabay, A.; Hadjipanayis, G. C. Mechanochemical synthesis of Nd2Fe14B alloy with high coercivity. J. Alloys Compd. 2012, 543, 31-33.
[32]
Rahimi, H.; Ghasemi, A.; Mozaffarinia, R.; Tavoosi, M. Coercivity enhancement mechanism in Dy-substituted Nd-Fe-B nanoparticles synthesized by sol-gel base method followed by a reduction-diffusion process. J. Magn. Magn. Mater. 2017, 429, 182-191.
[33]
Xia, M.; Abrahamsen, A. B.; Bahl, C. R. H.; Veluri, B.; Soegaard, A. I.; Bojsoe, P.; Millot, S. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets. J. Magn. Magn. Mater. 2017, 422, 232-236.
[34]
Sepehri-Amin, H.; Ohkubo, T.; Shima, T.; Hono, K. Grain boundary and interface chemistry of an Nd-Fe-B-based sintered magnet. Acta Mater. 2012, 60, 819-830.
[35]
Song, T. T.; Tang, X.; Yin, W. Z.; Ju, J. Y.; Wang, Z. X.; Liu, Q. B.; Tang, Y.; Chen, R. J.; Yan, A. R. Magnetic properties improvement of hot-deformed Nd-Fe-B permanent magnets by Pr-Cu eutectic pre-diffusion process. Acta Mater. 2019, 174, 332-341.
[36]
Sawatzki, S.; Kübel, C.; Ener, S.; Gutfleisch, O. Grain boundary diffusion in nanocrystalline Nd-Fe-B permanent magnets with low-melting eutectics. Acta Mater. 2016, 115, 354-363.
[37]
Ma, T.; Wu, B.; Zhang, Y.; Jin, J.; Wu, K.; Tao, S.; Xia, W.; Yan, M. Enhanced coercivity of Nd-Ce-Fe-B sintered magnets by adding (Nd, Pr)-H powders. J. Alloys Compd. 2017, 721, 1-7.
[38]
Zhang, L. L.; Li, Z. B.; Ma, Q.; Li, Y. F.; Zhao, Q.; Zhang, X. F. Coercivity enhancement in (Ce,Nd)-Fe-B sintered magnets prepared by adding NdHx powders. J. Magn. Magn. Mater. 2017, 435, 96-99.
[39]
Zhang, C. Z.; Hao, R.; Liao, H. B.; Hou, Y. L. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013, 2, 88-97.
[40]
Yang, C.; Jia, L. H.; Wang, S. G.; Gao, C.; Shi, D. W.; Hou, Y. L.; Gao, S. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: A novel chemical approach. Sci. Rep. 2013, 3, 3542.
[41]
Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426-1436.
[42]
Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689-2704.
[43]
Kelly, P. E.; O’Grady, K.; Mayo, P. I.; Chantrell, R. W. Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans. Magn. 1989, 25, 3881-3883.
[44]
Liu, D.; Ma, T. Y.; Wang, L. C.; Liu, Y. L.; Zhao, T. Y.; Hu, F. X.; Sun, J. R.; Shen, B. G. Computational analysis of microstructure-coercivity relation in multi-main-phase Nd-Ce-Fe-B magnets. J. Phys. D: Appl. Phys. 2019, 52, 135002.
[45]
Tang, X.; Chen, R. J.; Yin, W. Z.; Jin, C. X.; Lee, D.; Yan, A. The magnetization behavior and open recoil loops of hot-deformed Nd-Fe-B magnets infiltrated by low melting point PrNd-Cu alloys. Appl. Phys. Lett. 2015, 107, 202403.
[46]
Wang, Z. X.; Yin, W. Z.; Wang, J. Z.; Jin, C. X.; Chen, R. J.; Ju, J. Y.; Tang, X.; Lee, D.; Yan, A. R. Hot-deformed Nd-Fe-B magnet with macroscopic composite structure. Appl. Phys. Lett. 2017, 111, 182407.
[47]
Yang, J. B.; Han, J. Z.; Tian, H. D.; Zha, L.; Zhang, X. Z.; Song Kim, C.; Liang, D.; Yang, W. Y.; Liu, S. Q.; Wang, C. S. Structural and magnetic properties of nanocomposite Nd-Fe-B prepared by rapid thermal processing. Engineering 2020, 6, 131-139.
File
12274_2020_2761_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2020
Revised: 29 February 2020
Accepted: 15 March 2020
Published: 07 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51590882, 51631001 and 51672010), and the National Key R&D Program of China (No. 2017YFA0206301).

Return