Journal Home > Volume 13 , Issue 7

The layered semiconducting transition metal dichalcogenides (s-TMDs) have attracted considerable interest as the channel material for field-effect transistors (FETs). However, the multilayer s-TMD transistors usually exhibit considerable threshold voltage (Vth) shift and ambipolar behavior at high source-drain bias, which is undesirable for modern digital electronics. Here we report the design and fabrication of double feedback gate (FBG) transistors, i.e., source FBG (S-FBG) and drain FBG (D-FBG), to combat these challenges. The FBG transistors differ from normal transistors by including an extra feedback gate, which is directly connected to the source/drain electrodes by extending and overlapping the source/drain electrodes over the yttrium oxide dielectrics on s-TMDs. We show that the S-FBG transistors based on multilayer MoS2 exhibit nearly negligible Vth roll-off at large source-drain bias, and the D-FBG multilayer WSe2 transistors could be tailored into either n-type or p-type transport, depending on the polarity of the drain bias. The double FBG structure offers an effective strategy to tailor multilayer s-TMD transistors with suppressed Vth roll-off and ambipolar transport for high-performance and low-power logic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors

Show Author's information Yang Liu1,§Peiqi Wang1,2,§Yiliu Wang1Yu Huang2Xiangfeng Duan1,3( )
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA

§ Yang Liu and Peiqi Wang contributed equally to this work.

Abstract

The layered semiconducting transition metal dichalcogenides (s-TMDs) have attracted considerable interest as the channel material for field-effect transistors (FETs). However, the multilayer s-TMD transistors usually exhibit considerable threshold voltage (Vth) shift and ambipolar behavior at high source-drain bias, which is undesirable for modern digital electronics. Here we report the design and fabrication of double feedback gate (FBG) transistors, i.e., source FBG (S-FBG) and drain FBG (D-FBG), to combat these challenges. The FBG transistors differ from normal transistors by including an extra feedback gate, which is directly connected to the source/drain electrodes by extending and overlapping the source/drain electrodes over the yttrium oxide dielectrics on s-TMDs. We show that the S-FBG transistors based on multilayer MoS2 exhibit nearly negligible Vth roll-off at large source-drain bias, and the D-FBG multilayer WSe2 transistors could be tailored into either n-type or p-type transport, depending on the polarity of the drain bias. The double FBG structure offers an effective strategy to tailor multilayer s-TMD transistors with suppressed Vth roll-off and ambipolar transport for high-performance and low-power logic applications.

Keywords: two-dimensional transition metal dichalcogenides, feedback gate transistor, threshold voltage roll-off, ambipolar behavior tailoring

References(36)

[1]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[2]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[3]
Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768-3773.
[4]
Liu, L. T.; Lu, Y.; Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 2013, 60, 4133-4139.
[5]
Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Tavakkoli, K G, A.; Chen, W.; Fang, S. A.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798-7806.
[6]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[7]
Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid, V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 2013, 102, 173107.
[8]
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[9]
Liu, Y.; Guo, J.; Wu, Y. C.; Zhu, E. B.; Weiss, N. O.; He, Q. Y.; Wu, H.; Cheng, H. C.; Xu, Y.; Shakir, I. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 2016, 16, 6337-6342.
[10]
Li, T.; Wan, B. S.; Du, G.; Zhang, B. S.; Zeng, Z. M. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates. AIP Adv. 2015, 5, 057102.
[11]
Abraham, M.; Mohney, S. E. Annealed Ag contacts to MoS2 field-effect transistors. J. Appl. Phys. 2017, 122, 115306.
[12]
Lin, M. W.; Kravchenko, I. I.; Fowlkes, J.; Li, X. F.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology 2016, 27, 165203.
[13]
Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W. Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors. Appl. Phys. Lett. 2016, 108, 023506.
[14]
Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.
[15]
Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563-8569.
[16]
Di Bartolomeo, A.; Genovese, L.; Giubileo, F.; Iemmo, L.; Luongo, G.; Foller, T.; Schleberger, M. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater. 2017, 5, 015014.
[17]
Cho, K.; Park, W.; Park, J.; Jeong, H.; Jang, J.; Kim, T. Y.; Hong, W. K.; Hong, S.; Lee, T. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 2013, 7, 7751-7758.
[18]
Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707-7712.
[19]
Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136-1140.
[20]
Zhang, F.; Appenzeller, J. Tunability of short-channel effects in MoS2 field-effect devices. Nano Lett. 2015, 15, 301-306.
[21]
Semiconductor Industry Association. ITRS: International technology roadmap for semiconductors (2009).
[22]
Qiu, C. G.; Zhang, Z. Y.; Zhong, D. L.; Si, J.; Yang, Y. J.; Peng, L. M. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio. ACS Nano 2015, 9, 969-977.
[23]
Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310-316.
[24]
Colinge, J. P. Multiple-gate SOI MOSFETs. Solid-State Electron. 2004, 48, 897-905.
[25]
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, USA, 2006.
DOI
[26]
Guo, Y.; Wei, X. L.; Shu, J. P.; Liu, B.; Yin, J. B.; Guan, C. R.; Han, Y. X.; Gao, S.; Chen, Q. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109.
[27]
Lee, C.; Rathi, S.; Khan, M. A.; Lim, D.; Kim, Y.; Yun, S. J.; Youn, D. H.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology 2018, 29, 335202.
[28]
Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
[29]
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[30]
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[31]
Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 2014, 8, 4948-4953.
[32]
Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano 2014, 8, 1031-1038.
[33]
Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 2003, 91, 305-327.
[34]
Bryllert, T.; Wernersson, L. E.; Froberg, L. E.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 2006, 27, 323-325.
[35]
Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489-493.
[36]
Wang, Z. X.; Xu, H. L.; Zhang, Z. Y.; Wang, S.; Ding, L.; Zeng, Q. S.; Yang, L. J.; Pei, T.; Liang, X. L.; Gao, M. et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano Lett. 2010, 10, 2024-2030.
File
12274_2020_2760_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 December 2019
Revised: 21 February 2020
Accepted: 16 March 2020
Published: 30 March 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

X. F. D. acknowledges financial support by ONR through grant number N000141812707. Y. H. acknowledges the financial support from National Science Foundation EFRI-1433541.

Return