Journal Home > Volume 13 , Issue 5

Direct ethanol fuel cell (DEFC) has received tremendous research interests because of the more convenient storage and transportation of ethanol vs. compressed hydrogen. However, the electrocatalytic ethanol oxidation reaction typically requires precious metal catalysts and is plagued with relatively high over potential and low mass activity. Here we report the synthesis of Pt3Ag alloy wavy nanowires via a particle attachment mechanism in a facile solvothermal process. Transmission microscopy studies and elemental analyses show highly wavy nanowire structures with an average diameter of 4.6 ± 1.0 nm and uniform Pt3Ag alloy formation. Electrocatalytic studies demonstrate that the resulting alloy nanowires can function as highly effective electrocatalysts for ethanol oxidation reactions (EOR) with ultrahigh specific activity of 28.0 mA/cm2 and mass activity of 6.1 A/mg, far exceeding that of the commercial Pt/carbon samples (1.10 A/mg). The improved electrocatalytic activity may be partly attributed to partial electron transfer from Ag to Pt in the Pt3Ag alloy, which weakens CO binding and the CO poisoning effect. The one-dimensional nanowire morphology also contributes to favorable charge transport properties that are critical for extracting charge from catalytic active sites to external circuits. The chronoamperometry studies demonstrate considerably improved stability for long term operation compared with the commercial Pt/C samples, making the Pt3Ag wavy nanowires an attractive electrocatalyst for EOR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction

Show Author's information Xiaoyang Fu1Chengzhang Wan1Aixin Zhang1Zipeng Zhao2Huaixun Huyan3Xiaoqing Pan3,4,5Shuaijing Du1Xiangfeng Duan1,6( )Yu Huang2,6( )
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA
Irvine Materials Research Institute (IMRI), University of California, Irvine, Irvine, California 92697, USA
Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, USA
California Nanosystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA

Abstract

Direct ethanol fuel cell (DEFC) has received tremendous research interests because of the more convenient storage and transportation of ethanol vs. compressed hydrogen. However, the electrocatalytic ethanol oxidation reaction typically requires precious metal catalysts and is plagued with relatively high over potential and low mass activity. Here we report the synthesis of Pt3Ag alloy wavy nanowires via a particle attachment mechanism in a facile solvothermal process. Transmission microscopy studies and elemental analyses show highly wavy nanowire structures with an average diameter of 4.6 ± 1.0 nm and uniform Pt3Ag alloy formation. Electrocatalytic studies demonstrate that the resulting alloy nanowires can function as highly effective electrocatalysts for ethanol oxidation reactions (EOR) with ultrahigh specific activity of 28.0 mA/cm2 and mass activity of 6.1 A/mg, far exceeding that of the commercial Pt/carbon samples (1.10 A/mg). The improved electrocatalytic activity may be partly attributed to partial electron transfer from Ag to Pt in the Pt3Ag alloy, which weakens CO binding and the CO poisoning effect. The one-dimensional nanowire morphology also contributes to favorable charge transport properties that are critical for extracting charge from catalytic active sites to external circuits. The chronoamperometry studies demonstrate considerably improved stability for long term operation compared with the commercial Pt/C samples, making the Pt3Ag wavy nanowires an attractive electrocatalyst for EOR.

Keywords: silver, alloy, electrocatalysis, platinum, ethanol oxidation reaction (EOR), wavy nanowires

References(39)

[1]
Joghee, P.; Malik, J. N.; Pylypenko, S.; O’Hayre, R. A review on direct methanol fuel cells—In the perspective of energy and sustainability. MRS Energy Sustain .2015, 2, E3.
[2]
Yu, E. H.; Krewer, U.; Scott, K. Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 2010, 3, 1499-1528.
[3]
Lei, M.; Wang, J.; Li, J. R.; Wang, Y. G.; Tang, H. L.; Wang, W. J. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell. Sci. Rep .2014, 4, 6013.
[4]
Yuan, Y.; Wang, J. C.; Adimi, S.; Shen, H. J.; Thomas, T.; Ma, R. G.; Attfield, J. P.; Yang, M. H. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater .2020, 19, 282-286.
[5]
Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci .2014, 7, 576-591.
[6]
Wang, Y.; Li, L.; Hu, L.; Zhuang, L.; Lu, J. T.; Xu, B. Q. A feasibility analysis for alkaline membrane direct methanol fuel cell: Thermodynamic disadvantages versus kinetic advantages. Electrochem. Commun .2003, 5, 662-666.
[7]
Cifrain, M.; Kordesch, K. V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J. Power Sources 2004, 127, 234-242.
[8]
Zhang, B. W.; Yang, H. L.; Wang, Y. X.; Dou, S. X.; Liu, H. K. A comprehensive review on controlling surface composition of Pt-based bimetallic electrocatalysts. Adv. Energy Mater .2018, 8, 1703597.
[9]
Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198-219.
[10]
Xu, C. X.; Wang, L.; Mu, X. L.; Ding, Y. Nanoporous PtRu alloys for electrocatalysis. Langmuir 2010, 26, 7437-7443.
[11]
Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719-3724.
[12]
Jiang, Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, G. Q. A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media. Catal. Commun .2010, 12, 67-70.
[13]
Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater .2017, 29, 1703057.
[14]
Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun .2015, 6, 10035.
[15]
Zhao, X.; Zhang, H. T.; Yan, Y.; Cao, J. H.; Li, X. Q.; Zhou, S. M.; Peng, Z. M.; Zeng, J. Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution. Angew. Chem., Int. Ed .2017, 56, 328-332.
[16]
Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc .2014, 136, 14107-14113.
[17]
Shang, C. S.; Guo, Y. X.; Wang, E. K. Integration of two-dimensional morphology and porous surfaces to boost methanol electrooxidation performances of PtAg alloy nanomaterials. Nano Res .2018, 11, 6375-6383.
[18]
Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed .2011, 50, 4637-4643.
[19]
Monyoncho, E. A.; Steinmann, S. N.; Sautet, P.; Baranova, E. A.; Michel, C. Computational screening for selective catalysts: Cleaving the C-C bond during ethanol electro-oxidation reaction. Electrochim. Acta 2018, 274, 274-278.
[20]
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.
[21]
Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal .2019, 2, 495-503.
[22]
Fu, X. Y.; Zhao, Z. P.; Wan, C. Z.; Wang, Y. L.; Fan, Z.; Song, F.; Cao, B. C.; Li, M. F.; Xue, W.; Huang, Y. et al. Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA. Nano Res .2019, 12, 211-215.
[23]
Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett .2014, 14, 3887-3894.
[24]
Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res .2018, 11, 499-510.
[25]
Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res .2019, 12, 323-329.
[26]
Khoa, N. T.; Van Thuan, D.; Kim, S. W.; Park, S.; Van Tam, T.; Choi, W. M.; Cho, S.; Kim, E. J.; Hahn, S. H. Facile fabrication of thermally reduced graphene oxide-platinum nanohybrids and their application in catalytic reduction and dye-sensitized solar cells. RSC Adv .2016, 6, 1535-1541.
[27]
Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep .2014, 4, 3969.
[28]
Mao, H. B.; Feng, J. Y.; Ma, X.; Wu, C.; Zhao, X. J. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanopart. Res .2012, 14, 887.
[29]
Wang, W.; Wang, Z. Y.; Yang, M. M.; Zhong, C. J.; Liu, C. J. Highly active and stable Pt (111) catalysts synthesized by peptide assisted room temperature electron reduction for oxygen reduction reaction. Nano Energy 2016, 25, 26-33.
[30]
Daşdelen, Z.; Yıldız, Y.; Eriş, S.; Şen, F. Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl. Catal. B: Environ .2017, 219, 511-516.
[31]
Huang, J.; Liu, Y.; Xu, M. J.; Wan, C. Z.; Liu, H. T.; Li, M. F.; Huang, Z. H.; Duan, X. F.; Pan, X. Q.; Huang, Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett .2019, 19, 5431-5436.
[32]
Liu, T. Y.; Li, C. Z.; Yuan, Q. Facile synthesis of PtCu alloy/graphene oxide hybrids as improved electrocatalysts for alkaline fuel cells. ACS Omega 2018, 3, 8724-8732.
[33]
Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 2014, 6, 3607-3614.
[34]
Yazdan-Abad, M. Z.; Noroozifar, M.; Alam, A. R. M.; Saravani, H. Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J. Mater. Chem. A 2017, 5, 10244-10249.
[35]
Chung, D. Y.; Lee, K. J.; Sung, Y. E. Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C 2016, 120, 9028-9035.
[36]
Zhao, Y. Z.; Li, X. M.; Schechter, J. M.; Yang, Y. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv .2016, 6, 5384-5390.
[37]
Hofstead-Duffy, A. M.; Chen, D. J.; Sun, S. G.; Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem .2012, 22, 5205-5208.
[38]
Sulaiman, J. E.; Zhu, S. Q.; Xing, Z. L.; Chang, Q. W.; Shao, M. H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal .2017, 7, 5134-5141.
[39]
Zhang, Y. P.; Gao, F.; Song, P. P.; Wang, J.; Guo, J.; Shiraishi, Y.; Du, Y. K. Glycine-assisted fabrication of N-doped graphene-supported uniform multipetal PtAg nanoflowers for enhanced ethanol and ethylene glycol oxidation. ACS Sustain. Chem. Eng .2019, 7, 3176-3184.
File
12274_2020_2754_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 December 2019
Revised: 20 February 2020
Accepted: 10 March 2020
Published: 07 April 2020
Issue date: May 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

X. F. D. acknowledges support from National Science Foundation award 1800580. Y. H. acknowledges support from Office of Naval Research grant N000141812155. X. Q. P. acknowledge the support from the National Science Foundation award DMR-1506535. HAADF imaging and EDS mapping were carried out using the JEOL Grand ARM in the Irvine Materials Research Institute at the University of California, Irvine.

Return