Journal Home > Volume 13 , Issue 6

Photodynamic therapy (PDT) is a promising non-invasive therapy approach for various diseases including malignant tumor. The process of PDT involves three interrelated aspects, namely photosensitizer (PS), light source, and oxygen, among which PS is the decisive factor that determines its anticancer efficiency. There exist some defects in currently applied PDT, such as inadequate production of reactive oxygen species (ROS), poor penetration of exciting light, insufficient oxygen supply, and nonselective distribution of PS. With unique physicochemical and optical properties, two-dimensional nanomaterials (2DNMs) have aroused great interest in biomedical fields. 2DNMs-based PDT is promising to significantly improve antitumor efficacy compared to conventional PDT. In this review, we will firstly introduce the underlying mechanism of PDT and how 2DNMs are absorbed and distribute inside tumor cells. After that, we will not only illustrate how 2DNMs-based PDT can enhance tumor-killing efficacy and minimize side-effects through conquering the above-mentioned defects of conventional PDT and the preparation process of 2DNMs, but also elaborate recent advances about 2DNMs-based PDT. Lastly, we will summarize the challenges and future prospects of 2DNMs-based PDT.


menu
Abstract
Full text
Outline
About this article

Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials

Show Author's information Xinqiang Wu1,§Xiaofeng Jiang1,§Taojian Fan2,3,4,§Zhiwei Zheng1Zhaoyuan Liu1Yubin Chen1Liangqi Cao1Zhongjian Xie2,3,4Dawei Zhang1Jiaqi Zhao2,3,4Qiwen Wang1Zhenhui Huang1Zhijian Chen1Ping Xue1( )Han Zhang2,3,4( )
Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China

§ Xinqiang Wu, Xiaofeng Jiang, and Taojian Fan contributed equally to this work.

Abstract

Photodynamic therapy (PDT) is a promising non-invasive therapy approach for various diseases including malignant tumor. The process of PDT involves three interrelated aspects, namely photosensitizer (PS), light source, and oxygen, among which PS is the decisive factor that determines its anticancer efficiency. There exist some defects in currently applied PDT, such as inadequate production of reactive oxygen species (ROS), poor penetration of exciting light, insufficient oxygen supply, and nonselective distribution of PS. With unique physicochemical and optical properties, two-dimensional nanomaterials (2DNMs) have aroused great interest in biomedical fields. 2DNMs-based PDT is promising to significantly improve antitumor efficacy compared to conventional PDT. In this review, we will firstly introduce the underlying mechanism of PDT and how 2DNMs are absorbed and distribute inside tumor cells. After that, we will not only illustrate how 2DNMs-based PDT can enhance tumor-killing efficacy and minimize side-effects through conquering the above-mentioned defects of conventional PDT and the preparation process of 2DNMs, but also elaborate recent advances about 2DNMs-based PDT. Lastly, we will summarize the challenges and future prospects of 2DNMs-based PDT.

Keywords: photodynamic therapy, reactive oxygen species, two-dimensional nanomaterials, photosensitizer

References(268)

[1]
Chilakamarthi, U.; Giribabu, L. Photodynamic therapy: Past, present and future. Chem. Rec. 2017, 17, 775-802.
[2]
Zhang, J.; Jiang, C. S.; Figueiró Longo, J. P.; Azevedo, R. B.; Zhang, H.; Muehlmann, L. A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B 2018, 8, 137-146.
[3]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098-1107.
[4]
Zhang, K.; Zhang, Y. D.; Meng, X. D.; Lu, H. T.; Chang, H.; Dong, H. F.; Zhang, X. J. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials 2018, 185, 301-309.
[5]
Theodoraki, M. N.; Lorenz, K.; Lotfi, R.; Fürst, D.; Tsamadou, C.; Jaekle, S.; Mytilineos, J.; Brunner, C.; Theodorakis, J.; Hoffmann, T. K. et al. Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer. Photodiagnosis Photodyn. Ther. 2017, 19, 194-201.
[6]
Kochevar, I. E. Singlet oxygen signaling: From intimate to global. Sci. STKE 2004, 2004, pe7.
[7]
Wang, H.; Jiang, S. L.; Shao, W.; Zhang, X. D.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Luo, Y.; Xie, Y. Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 2018, 140, 3474-3480.
[8]
Lin, Y.; Wu, Y.; Wang, R.; Tao, G.; Luo, P. F.; Lin, X.; Huang, G. M.; Li, J.; Yang, H. H. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem. Commun. 2018, 54, 8579-8582.
[9]
Duan, X. P.; Chan, C.; Guo, N. N.; Han, W. B.; Weichselbaum, R. R.; Lin, W. B. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 2016, 138, 16686-16695.
[10]
Pizova, K.; Tomankova, K.; Daskova, A.; Binder, S.; Bajgar, R.; Kolarova, H. Photodynamic therapy for enhancing antitumour immunity. Biomed. Pap. 2012, 156, 93-102.
[11]
Yeung, H. Y.; Lo, P. C.; Ng, D. K. P.; Fong, W. P. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell. Mol. Immunol. 2017, 14, 223-234.
[12]
Wang, T. T.; Zhang, H.; Han, Y. B.; Liu, H. H.; Ren, F.; Zeng, J. F.; Sun, Q.; Li, Z.; Gao, M. Y. Light-enhanced O2-evolving nanoparticles boost photodynamic therapy to elicit antitumor immunity. ACS Appl. Mater. Interfaces 2019, 11, 16367-16379.
[13]
Jin, R. M.; Yang, J.; Ding, P. C.; Li, C. Q.; Zhang, B.; Chen, W.; Zhao, Y. D.; Cao, Y. C.; Liu, B. Antitumor Immunity triggered by photothermal therapy and photodynamic therapy of a 2D MoS2 nanosheet-incorporated injectable polypeptide-engineered hydrogel combinated with chemotherapy for 4T1 breast tumor therapy. Nanotechnology 2020, 31, 205102.
[14]
Tsubone, T. M.; Martins, W. K.; Pavani, C.; Junqueira, H. C.; Itri, R.; Baptista, M. S. Enhanced efficiency of cell death by lysosome-specific photodamage. Sci. Rep. 2017, 7, 6734.
[15]
van Lith, S. A. M.; van den Brand, D.; Wallbrecher, R.; Wübbeke, L.; van Duijnhoven, S. M. J.; Mäkinen, P. I.; Hoogstad-van Evert, J. S.; Massuger, L.; Ylä-Herttuala, S.; Brock, R. et al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur. J. Pharm. Biopharm. 2018, 124, 63-72.
[16]
Martins, W. K.; Santos, N. F.; de Sousa Rocha, C.; Bacellar, I. O. L.; Tsubone, T. M.; Viotto, A. C.; Matsukuma, A. Y.; De P. Abrantes, A. B.; Siani, P.; Dias, L. G. et al. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 2019, 15, 259-279.
[17]
Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. J. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small 2012, 8, 2577-2584.
[18]
Zhao, H. N.; Zhang, W.; Liu, Z. M.; Huang, D. Q.; Zhang, W. L.; Ye, B. G.; Hu, G. S.; Zhong, H. Q.; Zhuang, Z. F.; Guo, Z. Y. Insights into the intracellular behaviors of black-phosphorus-based nanocomposites via surface-enhanced Raman spectroscopy. Nanophotonics 2018, 7, 1651-1662.
[19]
Zhu, X. B.; Ji, X. Y.; Kong, N.; Chen, Y. H.; Mahmoudi, M.; Xu, X. D.; Ding, L.; Tao, W.; Cai, T.; Li, Y. J. et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano 2018, 12, 2922-2938.
[20]
Yang, T.; Ke, H. T.; Wang, Q. L.; Tang, Y. A.; Deng, Y. B.; Yang, H.; Yang, X. L.; Yang, P.; Ling, D. S.; Chen, C. Y. et al. Bifunctional tellurium nanodots for photo-induced synergistic cancer therapy. ACS Nano 2017, 11, 10012-10024.
[21]
Mao, J.; Chen, P. Y.; Liang, J. S.; Guo, R. H.; Yan, L. T. Receptor-mediated endocytosis of two-dimensional nanomaterials undergoes flat vesiculation and occurs by revolution and self-rotation. ACS Nano 2016, 10, 1493-1502.
[22]
Tao, W.; Ji, X. Y.; Zhu, X. B.; Li, L.; Wang, J. Q.; Zhang, Y.; Er Saw, P.; Li, W. L.; Kong, N.; Islam, M. A. et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 2018, 30, e1802061.
[23]
Song, Y. F.; Shi, X. J.; Wu, C. F.; Tang, D. Y.; Zhang, H. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 2019, 6, 021313.
[24]
Matsumoto, J.; Suzuki, K.; Yasuda, M.; Yamaguchi, Y.; Hishikawa, Y.; Imamura, N.; Nanashima, A. Photodynamic therapy of human biliary cancer cell line using combination of phosphorus porphyrins and light emitting diode. Bioorg. Med. Chem. 2017, 25, 6536-6541.
[25]
Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376-11382.
[26]
Guo, T.; Wu, Y.; Lin, Y.; Xu, X.; Lian, H.; Huang, G. M.; Liu, J. Z.; Wu, X. P.; Yang, H. H. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 2018, 14, 1702815.
[27]
Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580-1585.
[28]
Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.
[29]
Zheng, X. L.; Ge, J. C.; Wu, J. S.; Liu, W. M.; Guo, L.; Jia, Q. Y.; Ding, Y.; Zhang, H. Y.; Wang, P. F. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. Biomaterials 2018, 185, 133-141.
[30]
Dibaba, S. T.; Wei, R. Y.; Xi, W. S.; Zhao, L.; Shi, L. Y.; Ren, W.; Mayr, T.; Sun, L. N. Theranostic nanocomposite from upconversion luminescent nanoparticles and black phosphorus nanosheets. RSC Adv. 2018, 8, 35706-35718.
[31]
Hamblin, M. R. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018, 47, 8571-8580.
[32]
Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317-330.
[33]
Liu, Y. Y.; Liu, Y.; Bu, W. B.; Cheng, C.; Zuo, C. J.; Xiao, Q. F.; Sun, Y.; Ni, D. L.; Zhang, C.; Liu, J. N. et al. Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors. Angew. Chem., Int. Ed. 2015, 54, 8105-8109.
[34]
Lv, R. C.; Yang, D.; Yang, P. P.; Xu, J. T.; He, F.; Gai, S. L.; Li, C. X.; Dai, Y. L.; Yang, G. X.; Lin, J. Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater. 2016, 28, 4724-4734.
[35]
Hu, J.; Tang, Y. A.; Elmenoufy, A. H.; Xu, H. B.; Cheng, Z.; Yang, X. L. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment. Small 2015, 11, 5860-5887.
[36]
Huang, H.; He, L. Z.; Zhou, W. H.; Qu, G. B.; Wang, J. B.; Yang, N.; Gao, J.; Chen, T. F.; Chu, P. K.; Yu, X. F. Stable black phosphorus/ Bi2O3 heterostructures for synergistic cancer radiotherapy. Biomaterials 2018, 171, 12-22.
[37]
Detty, M. R.; Gibson, S. L.; Wagner, S. J. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 2004, 47, 3897-3915.
[38]
Tang, X. L.; Cheng, Y. H.; Huang, S. T.; Zhi, F.; Yuan, A. H.; Hu, Y. Q.; Wu, J. H. Overcome the limitation of hypoxia against photodynamic therapy to treat cancer cells by using perfluorocarbon nanodroplet for photosensitizer delivery. Biochem. Biophys. Res. Commun. 2017, 487, 483-487.
[39]
Liu, J. T.; Du P; Liu, T. R.; Córdova Wong, B. J.; Wang, W. P.; Ju, H. X.; Lei, J. P. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials 2019, 192, 179-188.
[40]
Casas, A.; Di Venosa, G.; Hasan, T.; Batlle, A. Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem. 2011, 18, 2486-2515.
[41]
Cadamuro, M.; Stecca, T.; Brivio, S.; Mariotti, V.; Fiorotto, R.; Spirli, C.; Strazzabosco, M.; Fabris, L. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 1435-1443.
[42]
Liu, J. T.; Du P; Mao, H.; Zhang, L.; Ju, H. X.; Lei, J. P. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials 2018, 172, 83-91.
[43]
Ma, Z. F.; Zhang, M. C.; Jia, X. D.; Bai, J.; Ruan, Y. D.; Wang, C.; Sun, X. P.; Jiang, X. FeIII-doped two-dimensional C3N4 nanofusiform: A new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small 2016, 12, 5477-5487.
[44]
Ouyang, J.; Deng, Y. Y.; Chen, W. S.; Xu, Q. F.; Wang, L. Q.; Liu, Z. J.; Tang, F. Y.; Deng, L.; Liu, Y. N. Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy. J. Mater. Chem. B 2018, 6, 2057-2064.
[45]
Lan, S. Y.; Lin, Z. G.; Zhang, D.; Zeng, Y. Y.; Liu, X. L. Photocatalysis enhancement for programmable killing of hepatocellular carcinoma through self-compensation mechanisms based on black phosphorus quantum-dot-hybridized nanocatalysts. ACS Appl. Mater. Interfaces 2019, 11, 9804-9813.
[46]
Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J. X.; Zhao, Y. Y.; Ma, Y. C.; Liu, H. R.; Xu, H. R.; Wang, Y. C. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060-4067.
[47]
Zhang, C.; Ren, J.; Hua, J. S.; Xia, L. Y.; He, J.; Huo, D.; Hu, Y. Multifunctional Bi2WO6 nanoparticles for CT-guided photothermal and oxygen-free photodynamic therapy. ACS Appl. Mater. Interfaces 2018, 10, 1132-1146.
[48]
Ge, X. X.; Xia, Z. H.; Guo, S. J. Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater. 2019, 29, 1900318.
[49]
Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.
[50]
Walia, S.; Balendhran, S.; Ahmed, T.; Singh, M.; El-Badawi, C.; Brennan, M. D.; Weerathunge, P.; Karim, M. N.; Rahman, F.; Rassell, A. et al. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 2017, 29, 1700152.
[51]
Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437-11441.
[52]
Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826-832.
[53]
Qiu, M.; Wang, D.; Liang, W. Y.; Liu, L. P.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C. Y.; Li, Z. J.; Dong, B. Q. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501-506.
[54]
Liu, H.; Zhang, Y.; Dong, Y. P.; Chu, X. F. Electrogenerated chemiluminescence aptasensor for lysozyme based on copolymer nanospheres encapsulated black phosphorus quantum dots. Talanta 2019, 199, 507-512.
[55]
Chen, L.; Chen, C.; Chen, W.; Li, K.; Chen, X. Z.; Tang, X. D.; Xie, G. F.; Luo, X.; Wang, X. J.; Liang, H. J. et al. Biodegradable black phosphorus nanosheets mediate specific delivery of hTERT siRNA for synergistic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 21137-21148.
[56]
Liu, T.; Wang, C.; Cui, W.; Gong, H.; Liang, C.; Shi, X. Z.; Li, Z. W.; Sun, B. Q.; Liu, Z. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 2014, 6, 11219-11225.
[57]
Gao, N. S.; Nie, J. P.; Wang, H. F.; Xing, C. Y.; Mei, L.; Xiong, W.; Zeng, X. W.; Peng, Z. C. A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy. J. Biomed. Nanotechnol. 2018, 14, 1883-1897.
[58]
Liu, Y. L.; Zhou, M.; Zhang, W. C.; Chen, K. Q.; Mei, A. H.; Zhang, Y. Y.; Chen, W. Enhanced photocatalytic properties of TiO2 nanosheets@2D layered black phosphorus composite with high stability under hydro-oxygen environment. Nanoscale 2019, 11, 5674-5683.
[59]
Zhang, Z. C.; He, D. Y.; Liu, H. Y.; Ren, M.; Zhang, Y. N.; Qu, J.; Lu, N.; Guan, J. N.; Yuan, X. Synthesis of graphene/black phosphorus hybrid with highly stable P-C bond towards the enhancement of photocatalytic activity. Environ. Pollut. 2019, 245, 950-956.
[60]
Xing, B. R.; Guan, L.; Yu, Y.; Niu, X. Y.; Yan, X. Y.; Zhang, S. C.; Yao, J. D.; Wang, D.; Sha, J.; Wang, Y. W. HfO2-Passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio. Nanotechnology 2019, 30, 345208.
[61]
Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408-9415.
[62]
Lv, W. M.; Yang, B. C.; Wang, B. C.; Wan, W. H.; Ge, Y. F.; Yang, R. L.; Hao, C. X.; Xiang, J. Y.; Zhang, B. S.; Zeng, Z. M. et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces 2018, 10, 9663-9668.
[63]
Li, H.; Lian, P. C.; Lu, Q. J.; Chen, J. C.; Hou, R. R.; Mei, Y. Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure. Mater. Res. Express 2016, 6, 65504.
[64]
Cai, J. Y.; Gou, X. D.; Sun, B. L.; Li, W. Y.; Li, D.; Liu, J. L.; Hu, F. D.; Li, Y. D. Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin. Biosens. Bioelectron. 2019, 137, 88-95.
[65]
Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812-818.
[66]
Sun, Z. B.; Zhao, Y. T.; Li, Z. B.; Cui, H. D.; Zhou, Y. Y.; Li, W. H.; Tao, W.; Zhang, H.; Wang, H. Y.; Chu, P. K. et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 2017, 13, 1602896.
[67]
Chan, L.; Gao, P.; Zhou, W. H.; Mei, C. M.; Huang, Y. Y.; Yu, X. F.; Chu, P. K.; Chen, T. F. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge-switching ability for precise tumor radiosensitization. ACS Nano 2018, 12, 12401-12415.
[68]
Wan, H.; Zhang, Y.; Zhang, W. B.; Zou, H. F. Robust two-photon visualized nanocarrier with dual targeting ability for controlled chemo-photodynamic synergistic treatment of cancer. ACS Appl. Mater. Interfaces 2015, 7, 9608-9618.
[69]
Li, Z.; Guo, T.; Hu, Y. H.; Qiu, Y.; Liu, Y.; Wang, H. M.; Li, Y.; Chen, X.; Song, J. B.; Yang, H. H. A Highly effective π-π stacking strategy to modify black phosphorus with aromatic molecules for cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 9860-9871.
[70]
Luo, M. M.; Cheng, W.; Zeng, X. W.; Mei, L.; Liu, G.; Deng, W. B. Folic acid-functionalized black phosphorus quantum dots for targeted chemo-photothermal combination cancer therapy. Pharmaceutics 2019, 11, 242.
[71]
Wei, Y. C.; Zhou, F. F.; Zhang, D.; Chen, Q.; Xing, D. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale 2016, 8, 3530-3538.
[72]
Wang, Y. W.; Qiu, M.; Won, M.; Jung, E.; Fan, T. J.; Xie, N.; Chi, S. G.; Zhang, H.; Kim, J. S. Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coordin. Chem. Rev. 2019, 400, 213041.
[73]
Wang, Z. T.; Mu, H. R.; Yuan, J.; Zhao, C. J.; Bao, Q. L.; Zhang, H. Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J. Sel. Top. Quant. Electron. 2017, 23, 8800105.
[74]
Song, Y. F.; Liang, Z. M.; Zhang, H.; Zhang, Q.; Zhao, L. M.; Shen, D. Y.; Tang, D. Y. Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser. IEEE Photonics J. 2017, 9, 4502308.
[75]
Liu, S. X.; Li, Z. J.; Ge, Y. Q.; Wang, H. D.; Yue, R.; Jiang, X. T.; Li, J. Q.; Wen, Q.; Zhang, H. Graphene/phosphorene nano-heterojunction: Facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Res. 2017, 5, 662-668.
[76]
Chen, X.; Wang, Y.; Xiang, Y. J.; Jiang, G. B.; Wang, L. L.; Bao, Q. L.; Zhang, H.; Liu, Y.; Wen, S. C.; Fan, D. Y. A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol. 2016, 34, 4948-4953.
[77]
Ponraj, J. S.; Xu, Z. Q.; Dhanabalan, S. C.; Mu, H. R.; Wang, Y. S.; Yuan, J.; Li, P. F.; Thakur, S.; Ashrafi, M.; McCoubrey, K. et al. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 2016, 27, 462001.
[78]
Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015-1024.
[79]
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2009, 39, 228-240.
[80]
Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560-10564.
[81]
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Yue, W.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
[82]
Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603-5613.
[83]
Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950-2956.
[84]
Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939-15944.
[85]
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.
[86]
Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487-1491.
[87]
Wu, L. M.; Xie, Z. J.; Lu, L.; Zhao, J. L.; Wang, Y. Z.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Lu, S. B.; Guo, Z. N. et al. Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 2018, 6, 1700985.
[88]
Xue, Y.; Xie, Z. D.; Ye, Z. L.; Hu, X. P.; Xu, J. L.; Zhang, H. Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm:YAP laser. Chin. Opt. Lett. 2018, 16, 020018.
[89]
Sharma, A.; Wen, B.; Liu, B. Q.; Myint, Y. W.; Zhang, H.; Lu, Y. R. Defect engineering in few-layer phosphorene. Small 2018, 14, 1704556.
[90]
Zhou, J.; Li, Z. J.; Ying, M.; Liu, M. X.; Wang, X. M.; Wang, X. Y.; Cao, L. W.; Zhang, H.; Xu, G. X. Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 2018, 10, 5060-5064.
[91]
Luo, S. J.; Zhao, J. L.; Zou, J. F.; He, Z. L.; Xu, C. W.; Liu, F. W.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-standing polypyrrole/ black phosphorus laminated film: Promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces 2018, 10, 3538-3548.
[92]
Zhang, C. L.; Li, Y. L.; Zhang, P. X.; Qiu, M.; Jiang, X. T.; Zhang, H. Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. Sol. Energy Mater. Sol. Cells 2019, 189, 11-20.
[93]
Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.
[94]
Song, Y. F.; Chen, Y. X.; Jiang, X. T.; Liang, W. Y.; Wang, K.; Liang, Z. M.; Ge, Y. Q.; Zhang, F.; Wu, L. M.; Zheng, J. L. et al. Nonlinear few-layer antimonene-based all-optical signal processing: Ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 2018, 6, 1701287.
[95]
Feng, B. J.; Sugino, O.; Liu, R. Y.; Zhang, J.; Yukawa, R.; Kawamura, M.; Iimori, T.; Kim, H.; Hasegawa, Y.; Li, H. et al. Dirac fermions in borophene. Phys. Rev. Lett. 2017, 118, 096401.
[96]
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2016, 350, 1513-1516.
[97]
Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563-568.
[98]
Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. F.; Zhang, R. J.; Zhu, H. Y. The electronic, optical, and thermodynamic properties of borophene from first-principle calculations. J. Mater. Chem. C 2016, 4, 3592-3598.
[99]
Wang, H. F.; Li, Q. F.; Gao, Y.; Miao, F.; Zhou, X. F.; Wan, X. G. Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability. New J. Phys. 2016, 18, 073016.
[100]
Li, W. L.; Chen, Q.; Tian, W. J.; Bai, H.; Zhao, Y. F.; Hu, H. S.; Li, J.; Zhai, H. J.; Li, S. D.; Wang, L. S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257-12260.
[101]
Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. et al. A. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685-690.
[102]
Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.
[103]
Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Peng, C.; Lan, C.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507-3511.
[104]
Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.
[105]
Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.
[106]
Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small 2015, 11, 640-652.
[107]
Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. ChemInform abstract: Buckled germanene formation on Pt(111). Cheminform 2015, 45, 4820-4824.
[108]
Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional Germanium allotrope akin to Graphene and Silicene. New J. Phys. 2014, 16, 095002.
[109]
Ni, Z. Y.; Liu, Q. H.; Tang, K. C.; Zheng, J. X.; Zhou, J.; Qin, R.; Gao, Z. X.; Yu, D. P.; Lu, J. Tunable bandgap in silicene and germanene. Nano Lett. 2012, 12, 113-118.
[110]
Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 2011, 98, 223107.
[111]
Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. C.; Zhang, X. C.; Zhu, H. Y. Low lattice thermal conductivity of stanene. Sci. Rep. 2016, 6, 20225.
[112]
Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020-1025.
[113]
Zhang, R. W.; Zhang, C. W.; Ji, W. X.; Li, S. S.; Hu, S. J.; Yan, S. S.; Li, P.; Wang, P. J.; Li, F. Ethynyl-functionalized stanene film: A promising candidate as large-gap quantum spin Hall insulator. New J. Phys. 2015, 17, 083036.
[114]
Xu, Y.; Tang, P. Z.; Zhang, S. C. Large-gap quantum spin hall states in decorated stanene grown on a substrate. Phys. Rev. B 2015, 92, 081112(R).
[115]
Wang, Y. P.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Ren, M. J.; Chen, X. L.; Yuan, M.; Wang, P. J. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 2016, 6, 20342.
[116]
Pizzi, G.; Gibertini, M.; Dib, E.; Marzari, N.; Iannaccone, G.; Fiori, G. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 2016, 7, 12585.
[117]
Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 127, 3155-3158.
[118]
Zhang, H. J.; Ma, Y. D.; Chen, Z. F. Quantum spin hall insulators in strain-modified arsenene. Nanoscale 2015, 7, 19152-19159.
[119]
Zhang, S. L.; Hu, Y. H.; Hu, Z. Y.; Cai, B.; Zeng, H. B. Hydrogenated arsenenes as planar magnet and Dirac material. Appl. Phys. Lett. 2015, 107, 022102.
[120]
Wang, Y. L.; Ding, Y. Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: A first-principle study. Nanoscale Res. Lett. 2015, 10, 254.
[121]
Huang, H.; Ren, X. H.; Li, Z. J.; Wang, H. D.; Huang, Z. Y.; Qiao, H.; Tang, P. H.; Zhao, J. L.; Liang, W. Y.; Ge, Y. Q. et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology 2018, 29, 235201.
[122]
Guo, B.; Wang, S. H.; Wu, Z. X.; Wang, Z. X.; Wang, D. H.; Huang, H.; Zhang, F.; Ge, Y. Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750-22760.
[123]
Lu, L.; Liang, Z. M.; Wu, L. M.; Chen, Y. X.; Song, Y. F.; Dhanabalan, S. C.; Ponraj, J. S.; Dong, B. Q.; Xiang, Y. J.; Xing, F. et al. Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 2018, 12, 1700221.
[124]
Liu, J. J.; Huang, H.; Zhang, F.; Zhang, Z.; Liu, J.; Zhang, H.; Su, L. B. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. Photonics Res. 2018, 6, 762-767.
[125]
Xing, C. Y.; Huang, W. C.; Xie, Z. J.; Zhao, J. L.; Ma, D. T.; Fan, T. J.; Liang, W. Y.; Ge, Y. Q.; Dong, B. Q.; Li, J. Q. et al. Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV-Vis photodetector. ACS Photonics 2018, 5, 621-629.
[126]
Jiang, Y. Q; Miao, L. L.; Jiang, G. B.; Chen, Y.; Qi, X.; Jiang, X. F.; Zhang, H.; Wen, S. C. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 2015, 5, 16372.
[127]
Huang, Z. Y.; Han, W. J.; Tang, H. L.; Ren, L.; Chander, D. S.; Qi, X.; Zhang, H. Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2015, 2, 035011.
[128]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[129]
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
[130]
Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176-7177.
[131]
Feldman, Y.; Wasserman, E.; Srolovitz, D. J.; Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995, 267, 222-225.
[132]
Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.
[133]
Zeng, Z. Y.; Tan, C. L.; Huang, X.; Bao, S. Y.; Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 797-803.
[134]
Lin, C. W.; Zhu, X. J.; Feng, J.; Wu, C. Z.; Hu, S. L.; Peng, J.; Guo, Y. Q.; Peng, L. L.; Zhao, J. Y.; Huang, J. L. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 2013, 135, 5144-5151.
[135]
Li, C. T.; Lee, C. P.; Li, Y. Y.; Yeh, M. H.; Ho, K. C. A composite film of TiS2/PEDOT:PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 14888-14896.
[136]
Guilmeau, E.; Bréard, Y.; Maignan, A. Transport and thermoelectric properties in Copper intercalated TiS2 chalcogenide. Appl. Phys. Lett. 2011, 99, 052107.
[137]
Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L. Q. Characterization of TiS2 as an anode material for lithium Ion batteries. Acta Phys. -Chim. Sin. 2011, 27, 97-102.
[138]
Navarro-Moratalla, E.; Island, J. O.; Mañas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.; Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillén, J. A.; Agraït, N. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 2016, 7, 11043.
[139]
Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974-1981.
[140]
Coronado, E.; Forment-Aliaga, A.; Navarro-Moratalla, E.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A. Nanofabrication of TaS2 conducting layers nanopatterned with Ta2O5 insulating regions via AFM. J. Mater. Chem. C 2013, 1, 7692-7694.
[141]
Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.
[142]
Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
[143]
Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.
[144]
Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S. R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 2012, 387, 791-793.
[145]
Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059-4062.
[146]
Ho, W.; Yu, J. C.; Lin, J.; Yu, J. G.; Li, P. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 2004, 20, 5865-5869.
[147]
Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.
[148]
Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125-5131.
[149]
Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419-2425.
[150]
Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of MoS2, MoSe2, and WSe2 nanolayers. Opt. Express, 2013, 21, 4908-4916.
[151]
Kubart, T.; Polcar, T.; Kopecký, L.; Novák, R.; Nováková, D. Temperature dependence of tribological properties of MOS2 and MoSe2 coatings. Surf. Coat. Technol. 2005, 193, 230-233.
[152]
Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923-930.
[153]
Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
[154]
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[155]
Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 2007, 315, 351-353.
[156]
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889-2893.
[157]
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
[158]
Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507-9516.
[159]
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.
[160]
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502-1505.
[161]
Tang, Q.; Zhou, Z.; Shen, P. W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909-16916.
[162]
Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.
[163]
Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 Photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518-1524.
[164]
Ge, L.; Han, C. C.; Liu, J. Novel visible light-induced g-C3N4/ Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B: Environ. 2011, 108-109, 100-107.
[165]
Dong, F.; Wu, L. W.; Sun, Y. J.; Min, F. J.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171-15174.
[166]
Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397-10401.
[167]
Osada, M.; Sasaki, T. Exfoliated oxidenanosheets: New solution to nanoelectronics. J. Mater. Chem. 2009, 19, 2503-2511.
[168]
Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124-4155.
[169]
Xing, C. Y.; Xie, Z. J.; Liang, Z. M.; Liang, W. Y.; Fan, T. J.; Ponraj, J. S.; Dhanabalan, S. C.; Fan, D. Y.; Zhang, H. 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater. 2017, 5, 1700884.
[170]
Tang, X.; Liang, W. Y.; Zhao, J. L.; Li, Z. J.; Qiu, M.; Fan, T. J.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. N. et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, 1702739.
[171]
Wang, H. D.; Sang, D. K.; Guo, Z. N.; Cao, R.; Zhao, J. L.; Ullah Shah, M. N.; Fan, T. J.; Fan, D. Y.; Zhang, H. Black phosphorus-based field effect transistor devices for Ag ions detection. Chinese Phys. B 2018, 27, 087308.
[172]
Jiang, X. T.; Gross, S.; Withford, M. J.; Zhang, H.; Yeom, D. I.; Rotermund, F.; Fuerbach, A. Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers. Opt. Mater. Express 2018, 8, 3055-3071.
[173]
Ge, Y. Q.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Li, L.; Zhang, H.; Zhao, L. M.; Fan, D. Y. Characterization of dark soliton sidebands in all-normal-dispersion fiber lasers. IEEE J. Sel. Top. Quant. Electron. 2018, 24, 0903407.
[174]
Tuo, M. F.; Xu, C.; Mu, H. R.; Bao, X. Z.; Wang, Y. W.; Xiao, S.; Ma, W. L.; Li, L.; Tang, D. Y.; Zhang, H. et al. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics 2018, 5, 1808-1816.
[175]
Liu, J. J.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Su, L. B. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express 2016, 24, 30289-30295.
[176]
Yao, Z.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew, Chem., Int. Ed. 2013, 52, 3110-3116.
[177]
Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[178]
Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.
[179]
Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.
[180]
Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480-3498.
[181]
Yin, Z. Y.; Zhu, J. X.; He, Q. Y.; Cao, X. H.; Tan, C. L.; Chen, H. Y.; Yan, Q. Y.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.
[182]
Yang, X. W.; Cheng, C.; Wang, Y. F..; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534-537.
[183]
Yoo, E. J.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277-2282.
[184]
Ding, H. J.; Shu, X. L.; Jin, Y. K.; Fan, T. J.; Zhang, H. Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection. Nanoscale 2019, 11, 5839-5860.
[185]
Fan, T. J.; Zhou, Y. S.; Qiu, M.; Zhang, H. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci. 2018, 11, 1830003.
[186]
Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067-1075.
[187]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[188]
Goyal, V.; Teweldebrhan, D.; Balandin, A. A. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 2010, 97, 133117.
[189]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[190]
Xing, C. Y.; Chen, S. Y.; Qiu, M.; Liang, X.; Liu, Q.; Zou, Q. S.; Li, Z. J.; Xie, Z. J.; Wang, D.; Dong, B. Q. et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 2018, 7, 1701510.
[191]
Kafaei, N.; Beiranvand, K.; Sabaeian, M.; Ghalambor Dezfuli, A.; Zhang, H. Spin-dependent k. p Hamiltonian of black phosphorene based on Löwdin partitioning method. J. Appl. Phys. 2018, 124, 035702.
[192]
Liu, J. M.; Chen, Y.; Li, Y.; Zhang, H.; Zheng, S. Q.; Xu, S. X. Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber. Photonics Res. 2018, 6, 198-203.
[193]
Wang, Y. Z.; Zhang, F.; Tang, X.; Chen, X.; Chen, Y. X.; Huang, W. C.; Liang, Z. M.; Wu, L. M.; Ge, Y. Q.; Song, Y. F. et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 2018, 12, 1800016.
[194]
Ji, Q. Q.; Zhang, Y.; Zhang, Y. F.; Liu, Z. F. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587-2602.
[195]
Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329-2339.
[196]
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.
[197]
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri, K. H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
[198]
Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.
[199]
Yoo, D.; Kim, M.; Jeong, S.; Han, J.; Cheon, J. Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 2014, 136, 14670-14673.
[200]
Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121-14127.
[201]
Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30-33.
[202]
Ren, X. H.; Zhou, J.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Li, Z. J.; Ge, Y. Q.; Dhanabalan, S. C.; Ponraj, J. S.; Wang, S. Y. et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1700396.
[203]
Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.
[204]
Li, Z. J.; Qiao, H.; Guo, Z. N.; Ren, X. H.; Huang, Z. Y.; Qi, X.; Dhanabalan, S. C.; Ponraj, J. S.; Zhang, D.; Li, J. Q. et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater. 2018, 28, 1705237.
[205]
Backes, C.; Higgins, T. M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J. N. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem. Mater. 2017, 29, 243-255.
[206]
Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.
[207]
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[208]
Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.
[209]
Wang, S.; Weng, J.; Fu, X.; Lin, J.; Fan, W. P.; Lu, N.; Qu, J. L.; Chen, S. P.; Wang, T. F.; Huang, P. Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy. Nanotheranostics 2017, 1, 208-216.
[210]
Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 6, 537-544.
[211]
Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.
[212]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[213]
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78-81.
[214]
Lin, H.; Wang, X. G.; Yu, L. D.; Chen, Y.; Shi, J. L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384-391.
[215]
Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.
[216]
Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Tang, Z. H.; Zhang, H. Y. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed. 2018, 57, 246-251.
[217]
Backes, C.; Szydłowska, B. M.; Harvey, A.; Yuan, S. J.; Vega-Mayoral, V.; Davies, B. R.; Zhao, P. L.; Hanlon, D.; Santos, E. J. G.; Katsnelson, M. I. et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 2016, 10, 1589-1601.
[218]
Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.
[219]
He, J. S.; Tao, L. L.; Zhang, H.; Zhou, B.; Li, J. B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577-2593.
[220]
Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891-2912.
[221]
Ghorbanzadeh, R.; Assadian, H.; Chiniforush, N.; Parker, S.; Pourakbari, B.; Ehsani, B.; Alikhani, M. Y.; Bahador, A. Modulation of virulence in Enterococcus faecalis cells surviving antimicrobial photodynamic inactivation with reduced graphene oxide-curcumin: An ex vivo biofilm model. Photodiagnsis Photodyn. Ther. 2020, 29, 101643.
[222]
Zhou, Y.; Zhang, M. X.; Guo, Z. N.; Miao, L. L.; Han, S. T.; Wang, Z. Y.; Zhang, X. W.; Zhang, H.; Peng, Z. C. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 2017, 4, 997-1019.
[223]
Song, Y. F.; Chen, S.; Zhang, Q.; Li, L.; Zhao, L. M.; Zhang, H.; Tang, D. Y. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express 2016, 24, 25933-25942.
[224]
Du J; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 2017, 7, 42357.
[225]
Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Controlled Release 2019, 296, 150-161.
[226]
Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[227]
Li, Y.; Liu, Z. M.; Hou, Y. Q.; Yang, G. C.; Fei, X. X.; Zhao, H. N.; Guo, Y. X.; Su, C. K.; Wang, Z.; Zhong, H. Q. et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 25098-25106.
[228]
Yang, X. Y.; Wang, D. Y.; Zhu, J. W.; Xue, L.; Ou, C. J.; Wang, W. J.; Lu, M.; Song, X. J.; Dong, X. C. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chem. Sci. 2019, 10, 3779-3785.
[229]
Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261-7284.
[230]
Dong, H. F.; Tang, S. S.; Hao, Y. S.; Yu, H. Z.; Dai, W. H.; Zhao, G. F.; Cao, Y.; Lu, H. T.; Zhang, X. J.; Ju, H. X. Fluorescent MoS2 quantum dots: Ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 3107-3114.
[231]
Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X.; Cong, W. S. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394-10403.
[232]
Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2014, 2, 1031-1037.
[233]
Ju, E. G.; Dong, K.; Chen, Z. W.; Liu, Z.; Liu, C. Q.; Huang, Y. Y.; Wang, Z. Z.; Pu, F.; Ren, J. S.; Qu, X. G. Copper(II)-graphitic carbon nitride triggered synergy: Improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew. Chem., Int. Ed. 2016, 55, 11467-11471.
[234]
Chen, R.; Zhang, J. F.; Wang, Y.; Chen, X. F.; Zapien, J. A.; Lee, C. S. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy. Nanoscale 2015, 7, 17299-17305.
[235]
Jiang, X. T.; Zhang, L. J.; Liu, S. X.; Zhang, Y. Y.; He, Z. L.; Li, W. J.; Zhang, F.; Shi, Y. H.; Lü, W.; Li, Y. et al. Ultrathin metal-organic framework: An emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 2018, 6, 1800561.
[236]
Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L. et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804-13810.
[237]
Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307-1312.
[238]
Lan, G. X.; Ni, K. Y.; Xu, R. Y.; Lu, K. D.; Lin, Z. K.; Chan, C.; Lin, W. B. Nanoscale metal-organic layers for deeply penetrating X-ray-induced photodynamic therapy. Angew. Chem., Int. Ed. 2017, 56, 12102-12106.
[239]
Jiang, Z. W.; Zou, Y. C.; Zhao, T. T.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal-node-dependent photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 3300-3306.
[240]
Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.
[241]
Liu, G. Y.; Zou, J. H.; Tang, Q. Y.; Yang, X. Y.; Zhang, Y. W.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J. J.; Dong, X. C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/ photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077-40086.
[242]
Hu, T. Y.; He, J.; Zhang, S. M.; Mei, X.; Zhang, W. K.; Liang, R. Z.; Wei, M.; Evans, D. G.; Duan, X. An ultrathin photosensitizer for simultaneous fluorescence imaging and photodynamic therapy. Chem. Commun. 2018, 54, 5760-5763.
[243]
Guan, S. Y.; Yang, D.; Weng, Y. Z. W.; Lu, H.; Meng, X. M.; Qu, X. Z.; Zhou, S. Y. Excitation-dependent theranostic nanosheet for cancer treatment. Adv. Healthc. Mater. 2018, 7, 1701123.
[244]
Gao, R.; Mei, X.; Yan, D. P.; Liang, R. Z.; Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 2018, 9, 2798.
[245]
Pan, C.; Ou, M. T.; Cheng, Q. Z.; Zhou, Y.; Yu, Y. K.; Li, Z. M.; Zhang, F.; Xia, D. H.; Mei, L.; Ji, X. Y. Z-Scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects. Adv. Funct. Mater. 2020, 30, 1906466.
[246]
Song, C. Q.; Yang, C. Y.; Wang, F.; Ding, D. D.; Gao, Y.; Guo, W.; Yan, M.; Liu, S. Q.; Guo, C. S. MoS2-based multipurpose theranostic nanoplatform: Realizing dual-imaging-guided combination phototherapy to eliminate solid tumor via a liquefaction necrosis process. J. Mater. Chem. B 2017, 5, 9015-9024.
[247]
Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715-8722.
[248]
Yang, L. F.; Wang, J. P.; Yang, S.; Lu, Q. L.; Li, P. S.; Li, N. Rod-shape MSN@MoS2 nanoplatform for FL/MSOT/CT imaging-guided photothermal and photodynamic therapy. Theranostics 2019, 9, 3992-4005.
[249]
Jia, L.; Ding, L.; Tian, J. W.; Bao, L.; Hu, Y. P.; Ju, H. X.; Yu, J. S. Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale 2015, 7, 15953-15961.
[250]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X. S.; Zhang, C. L.; Zhou, X. J.; Guo, S. W.; Cui, D. X. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240-250.
[251]
Wang, R. H.; Li, X. H.; Wang, Z. X.; Zhang, H. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: P-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 2017, 34, 131-140.
[262]
Li, P. F.; Chen, Y.; Yang, T. S.; Wang, Z. Y.; Lin, H.; Xu, Y. H.; Li, L.; Mu, H. R.; Shivananju, B. N.; Zhang, Y. P. et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 2017, 9, 12759-12765.
[253]
Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small 2018, e1800682.
[254]
Zhang, Y. P.; Lim, C. K.; Dai, Z. G.; Yu, G. N.; Haus, J. W.; Zhang, H.; Prasad, P. N. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 2019, 795, 1-51.
[255]
Xing, C. Y.; Jing, G. H.; Liang, X.; Qiu, M.; Li, Z. J.; Cao, R.; Li, X. J.; Fan, D. Y.; Zhang, H. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale 2017, 9, 8096-8101.
[256]
Xie, Z. J.; Chen, S. Y.; Duo, Y. H.; Zhu, Y.; Fan, T. J.; Zou, Q. S.; Qu, M. M.; Lin, Z. T.; Zhao, J. L.; Li, Y. et al. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 22129-22140.
[257]
Chen, Y. J.; Wu, Y. K.; Sun, B. B.; Liu, S. J.; Liu, H. Y. Two-dimensional nanomaterials for cancer nanotheranostics. Small 2017, 13, 1603446.
[258]
Chow, E. K. H.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med. 2013, 5, 216rv4.
[259]
Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703-717.
[260]
Kapri, S.; Bhattacharyya, S. Molybdenum sulfide-reduced graphene oxide p-n heterojunction nanosheets with anchored oxygen generating manganese dioxide nanoparticles for enhanced photodynamic therapy. Chem. Sci. 2018, 9, 8982-8989.
[261]
Ou, Q. D.; Zhang, Y. P.; Wang, Z. Y.; Yuwono, J. A.; Wang, R. B.; Dai, Z. G.; Li, W.; Zheng, C. X.; Xu, Z. Q.; Qi, X. et al. Strong depletion in hybrid perovskite p-n junctions induced by local electronic doping. Adv. Mater. 2018, 30, 1705792.
[262]
Moole, H.; Tathireddy, H.; Dharmapuri, S.; Moole, V.; Boddireddy, R.; Yedama, P.; Dharmapuri, S.; Uppu, A.; Bondalapati, N.; Duvvuri, A. Success of photodynamic therapy in palliating patients with nonresectable cholangiocarcinoma: A systematic review and meta-analysis. World J. Gastroenterol. 2017, 23, 1278-1288.
[263]
Cheon, Y. K.; Lee, T. Y.; Lee, S. M.; Yoon, J. Y.; Shim, C. S. Longterm outcome of photodynamic therapy compared with biliary stenting alone in patients with advanced hilar cholangiocarcinoma. HPB 2012, 14, 185-193.
[264]
Gonzalez-Carmona, M. A.; Bolch, M.; Jansen, C.; Vogt, A.; Sampels, M.; Mohr, R. U.; van Beekum, K.; Mahn, R.; Praktiknjo, M.; Nattermann, J. et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol. Ther. 2019, 49, 437-447.
[265]
Kimura, M.; Miyajima, K.; Kojika, M.; Kono, T.; Kato, H. Photodynamic Therapy (PDT) with chemotherapy for advanced lung cancer with airway stenosis. Int. J. Mol. Sci. 2015, 16, 25466-25475.
[266]
Autio, K. A.; Dreicer, R.; Anderson, J.; Garcia, J. A.; Alva, A.; Hart, L. L.; Milowsky, M. I.; Posadas, E. M.; Ryan, C. J.; Graf, R. P. et al. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: A phase 2 clinical trial. JAMA Oncol. 2018, 4, 1344-1351.
[267]
Lee, H.; Shields, A. F.; Siegel, B. A.; Miller, K. D.; Krop, I.; Ma, C. X.; LoRusso, P. M.; Munster, P. N.; Campbell, K.; Gaddy, D. F. et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 2017, 23, 4190-4202.
[268]
Wollina, U.; Gaber, B.; Koch, A. Photodynamic treatment with nanoemulsified 5-aminolevulinic acid and narrow band red light for field cancerization due to occupational exposure to ultraviolet light irradiation. Georgian Med. News 2018, 274, 138-143.
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2019
Revised: 05 March 2020
Accepted: 07 March 2020
Published: 19 May 2020
Issue date: June 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The research was partially supported by the National Natural Science Fundation of China (Nos. 61875138, 61435010, and 61961136001), and Science and Technology Innovation Commission of Shenzhen (No. JCYJ20170811093453105). Authors also acknowledge the support from Instrumental Analysis Center of Shenzhen University (Xili Campus).

Return