Journal Home > Volume 13 , Issue 4

We investigate the tunnel coupling between the outer p-type GaAsSb shell and the n-type InAs core in catalyst-free InAs/InP/ GaAsSb core-dualshell nanowires. We present a device fabrication protocol based on wet-etching processes on selected areas of the nanostructures that enables multiple configurations of measurements in the same nanowire-based device (i.e. shell-shell, core-core and core-shell). Low-temperature (4.2 K) transport in the shell-shell configuration in nanowires with 5 nm-thick InP barrier reveals a weak negative differential resistance. Differently, when the InP barrier thickness is increased to 10 nm, this negative differential resistance is fully quenched. The electrical resistance between the InAs core and the GaAsSb shell, measured in core-shell configuration, is significantly higher with respect to the resistance of the InAs core and of the GaAsSb shell. The field effect, applied via a back-gate, has an opposite impact on the electrical transport in the core and in the shell portions. Our results show that electron and hole free carriers populate the InAs and GaAsSb regions respectively and indicate InAs/InP/GaAsSb core-dualshell nanowires as an ideal system for the investigation of the physics of interacting electrons and holes at the nanoscale.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrical probing of carrier separation in InAs/InP/GaAsSb core-dualshell nanowires

Show Author's information Sedighe Salimian1( )Omer Arif1Valentina Zannier1Daniele Ercolani1Francesca Rossi2Zahra Sadre Momtaz1Fabio Beltram1Sefano Roddaro1,3Francesco Rossella1( )Lucia Sorba1
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma, Italy
Department of Physics "E.Fermi" , Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy

Abstract

We investigate the tunnel coupling between the outer p-type GaAsSb shell and the n-type InAs core in catalyst-free InAs/InP/ GaAsSb core-dualshell nanowires. We present a device fabrication protocol based on wet-etching processes on selected areas of the nanostructures that enables multiple configurations of measurements in the same nanowire-based device (i.e. shell-shell, core-core and core-shell). Low-temperature (4.2 K) transport in the shell-shell configuration in nanowires with 5 nm-thick InP barrier reveals a weak negative differential resistance. Differently, when the InP barrier thickness is increased to 10 nm, this negative differential resistance is fully quenched. The electrical resistance between the InAs core and the GaAsSb shell, measured in core-shell configuration, is significantly higher with respect to the resistance of the InAs core and of the GaAsSb shell. The field effect, applied via a back-gate, has an opposite impact on the electrical transport in the core and in the shell portions. Our results show that electron and hole free carriers populate the InAs and GaAsSb regions respectively and indicate InAs/InP/GaAsSb core-dualshell nanowires as an ideal system for the investigation of the physics of interacting electrons and holes at the nanoscale.

Keywords: nanoelectronics, semiconductor nanowires, core-dualshell nanowires, charge carrier separation

References(34)

[1]
Tomioka, K.; Fukui, T. Recent progress in integration of III-V nanowire transistors on Si substrate by selective-area growth. J. Phys. D: Appl. Phys. 2014, 47, 394001.
[2]
Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
[3]
Lauhon, L. J.; Gudiksen, M. S.; Wang D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57-61.
[4]
Johansson, J.; Dick, K. A. Recent advances in semiconductor nanowire heterostructures. CrystEngComm 2011, 13, 7175-7184.
[5]
Zhang, Y. Y.; Wu, J.; Aagesen M.; Liu, H. Y. III-V nanowires and nanowire optoelectronic devices. J. Phys. D: Appl. Phys. 2015, 48, 463001.
[6]
Battiato, S.; Wu, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology 2019, 30, 194004.
[7]
Wu, S. Y.; Peng, K.; Battiato, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Xie, X.; Yang, J. N.; Xiao S.; Qian, C. J. et al. Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires. Nano Res. 2019, 12, 2842-2848.
[8]
Li, D. P.; Lan, C. Y.; Manikandan, A.; Yip, S.; Zhou, Z. Y.; Liang, X. G.; Shu, L.; Chueh, Y. L.; Han, N.; Ho, J. C. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 2019, 10, 1664.
[9]
Nadar, N.; Rolland, C.; Lampin J. F.; Wallart, X.; Caroff, P.; Leturcq, R. Tunnel junctions in a III-V nanowire by surface engineering. Nano Res. 2015, 8, 980-989.
[10]
Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080-4085.
[11]
Kakkerla, R. K.; Hsiao, C. J.; Anandan, D.; Kumar Singh, S.; Po Chang, S.; Pande, K. P.; Chang, E. Y. Growth and crystal structure investigation of InAs/GaSb heterostructure nanowires on Si substrate. IEEE Trans. Nanotechnol. 2018, 17, 1151-1158.
[12]
Webb, J. L.; Persson, O.; Dick, K. A.; Thelander, C.; Timm, R.; Mikkelsen, A. High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices. Nano Res. 2014, 7, 877-887.
[13]
Borg, B. M.; Ek, M.; Ganjipour, B.; De A. W.; Dick, K. A.; Wernersson, L. E.; Thelander, C. Influence of doping on the electronic transport in GaSb/InAs(Sb) nanowire tunnel devices. Appl. Phys. Lett. 2012, 101, 043508.
[14]
Dey, A. W.; Borg, B. M.; Ganjipour, B.; Ek, M.; Dick K. A.; Lind, E.; Thelander, C.; Wernersson, L. E. High-current GaSb/InAs(Sb) nanowire tunnel field-effect transistors. IEEE Electron Device Lett. 2013, 34, 211-213.
[15]
Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. E.; Dick, K. A.; Wernersson, L. E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett. 2011, 11, 4222-4226.
[16]
Zeng, X. L.; Otnes, G.; Heurlin, M.; Mourão, R. T.; Borgström, M. T. InP/GaInP nanowire tunnel diodes. Nano Res. 2018, 11, 2523-2531.
[17]
Rossella, F.; Bertoni, A.; Ercolani, D.; Rontani, M.; Sorba, L.; Beltram F.; Roddaro, S. Nanoscale spin rectifiers controlled by the Stark effect. Nat. Nanotechnol. 2014, 9, 997-1001.
[18]
Thomas, F. S.; Baumgartner, A.; Gubser, L.; Jünger, C.; Fülöp, G.; Nilsson, M.; Rossi, F.; Zannier, V.; Sorba, L.; Schönenberger, C. Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. Nanotechnology 2020, 31, 135003.
[19]
Jünger, C.; Baumgartner, A.; Delagrange, R.; Chevallier, D.; Lehmann, S.; Nilsson, M.; Dick, K. A.; Thelander, C.; Schönenberger, C. Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots. Commun. Phys. 2019, 2, 76.
[20]
Royo, M.; De Luca, M.; Rurali, R.; Zardo, I. A review on III-V core-multishell nanowires: Growth, properties, and applications. J. Phys. D: Appl. Phys. 2017, 50, 143001.
[21]
Arif, O.; Zannier, V.; Li, A.; Rossi, F.; Ercolani, D.; Beltram, F.; Sorba, L. Growth and strain relaxation mechanisms of InAs/InP/GaAsSb core-dual-shell nanowires. Cryst. Growth Des. 2020, 20, 1088-1096.
[22]
Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148-154.
[23]
Rocci, M.; Rossella, F.; Gomes, U. P.; Zannier, V.; Rossi, F.; Ercolani, D.; Sorba, L.; Beltram, F.; Roddaro, S. Tunable esaki effect in catalyst-free InAs/GaSb core-shell nanowires. Nano Lett. 2016, 16, 7950-7955.
[24]
Ganjipour, B.; Ek, M.; Borg, B. M.; Dick, K. A.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires. Appl. Phys. Lett. 2012, 101, 103501.
[25]
Vasen, T.; Ramvall, P.; Afzalian, A.; Doornbos, G.; Holland, M.; Thelander, C.; Dick, K. A.; Wernersson, L. E.; Passlack, M. Vertical gate-all-around nanowire GaSb-InAs core-shell n-type tunnel FETs. Sci. Rep. 2019, 9, 202.
[26]
Ganjipour, B.; Leijnse, M.; Samuelson, Xu, L. H. Q.; Thelander, C. Transport studies of electron-hole and spin-orbit interaction in GaSb/ InAsSb core-shell nanowire quantum dots. Phys. Rev. B 2015, 91, 161301.
[27]
Furthmeier, S.; Dirnberger, F.; Gmitra, M.; Bayer, A.; Forsch, M.; Hubmann, J.; Schüller, C.; Reiger, E.; Fabian, J.; Korn, T. et al. Enhanced spin-orbit coupling in core/shell nanowires. Nat. Commun. 2016, 7, 12413.
[28]
Esaki, L. Long journey into tunneling. Proc. IEEE 1974, 62, 825-831.
[29]
Beukman, A. J. A.; De Vries, F. K.; Van Veen, J.; Skolasinski, R.; Wimmer, M.; Qu, F. M.; De Vries, D. T.; Nguyen, B. M.; Yi, W.; Kiselev, A. A. et al. Spin-orbit interaction in a dual gated InAs/GaSb quantum well. Phys. Rev. B 2017, 96, 241401.
[30]
Du, L. J.; Li, X. W.; Lou, W. K.; Sullivan, G.; Chang, K.; Kono, J.; Du, R. R. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 2017, 8, 1971.
[31]
Keller, A. J.; Lim, J. S.; Sánchez, D.; López, R.; Amasha, S.; Katine, J. A.; Shtrikman, H.; Goldhaber-Gordon, D. Cotunneling drag effect in coulomb-coupled quantum dots. Phys. Rev. Lett. 2016, 117, 066602.
[32]
Grasselli, F.; Bertoni, A.; Goldoni, G. The role of internal dynamics in the coherent evolution of indirect excitons, Superlattices Microstruct. 2017, 108, 73-78.
[33]
Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815-5875.
[34]
Song, L.; Degroote, S.; Choi, K. H.; Borghs, G.; Heremans, P. Release of epitaxial layers grown on InAs substrates. Electrochem. Solid-State Lett. 2003, 6, G25-G26.
File
12274_2020_2745_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2019
Revised: 28 February 2020
Accepted: 04 March 2020
Published: 17 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research activity was partially supported by the SUPERTOP project, QUANTERA ERA-NET Cofound in Quantum Technologies, and by the FET-OPEN project AndQC.

Return