Journal Home > Volume 13 , Issue 4

Moiré patterns from two-dimensional (2D) graphene heterostructures assembled via van der Waals interactions have sparked considerable interests in physics with the purpose to tailor the electronic properties of graphene. Here we report for the first time the observation of moiré patterns arising from a bilayer graphone/graphene superlattice produced through direct single-sided hydrogenation of a bilayer graphene on substrate. Compared to pristine graphene, the bilayer superlattice exhibits a rippled surface and two types of moiré patterns are observed: triangular and linear moiré patterns with the periodicities of 11 nm and 8-9 nm, respectively. These moiré patterns are revealed from atomic force microscopy and further confirmed by following fast Fourier transform (FFT) analysis. Density functional theory (DFT) calculations are also performed and the optimized lattice constants of bilayer superlattice heterostructure are in line with our experimental analysis. These findings show that well-defined triangular and linear periodic potentials can be introduced into the graphene system through the single-sided hydrogenation and also open a route towards the tailoring of electronic properties of graphene by various moiré potentials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Moiré patterns arising from bilayer graphone/graphene superlattice

Show Author's information Hu Li1,2( )Raffaello Papadakis3Tanveer Hussain4Amir Karton4Jiangwei Liu1( )
Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
School of Electrical and Electronic Engineering, University of Manchester, M13 9PL Manchester, UK
Department of Chemistry, Ångström Laboratory, Uppsala University, 75 121 Uppsala, Sweden
School of Molecular Sciences, University of Western Australia, WA6009 Perth, Australia

Abstract

Moiré patterns from two-dimensional (2D) graphene heterostructures assembled via van der Waals interactions have sparked considerable interests in physics with the purpose to tailor the electronic properties of graphene. Here we report for the first time the observation of moiré patterns arising from a bilayer graphone/graphene superlattice produced through direct single-sided hydrogenation of a bilayer graphene on substrate. Compared to pristine graphene, the bilayer superlattice exhibits a rippled surface and two types of moiré patterns are observed: triangular and linear moiré patterns with the periodicities of 11 nm and 8-9 nm, respectively. These moiré patterns are revealed from atomic force microscopy and further confirmed by following fast Fourier transform (FFT) analysis. Density functional theory (DFT) calculations are also performed and the optimized lattice constants of bilayer superlattice heterostructure are in line with our experimental analysis. These findings show that well-defined triangular and linear periodic potentials can be introduced into the graphene system through the single-sided hydrogenation and also open a route towards the tailoring of electronic properties of graphene by various moiré potentials.

Keywords: atomic force microscopy, Moiré patterns, graphone/graphene superlattice, triangular pattern, linear pattern

References(42)

[1]
Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A,; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R. et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594-597.
[2]
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
[3]
Gorbachev, R. V.; Song, J. C. W.; Yu, G. L.; Kretinin, A. V.; Withers, F.; Cao, Y.; Mishchenko, A.; Grigorieva, I. V.; Novoselov, K. S.; Levitov, L. S. et al. Detecting topological currents in graphene superlattices. Science 2014, 346, 448-451.
[4]
Li, H.; Daukiya, L.; Haldar, S.; Lindblad, A.; Sanyal, B.; Eriksson, O.; Aubel, D.; Hajjar-Garreau, S.; Simon, L.; Leifer, K. Site-selective local fluorination of graphene induced by focused ion beam irradiation. Sci. Rep. 2016, 6, 19719.
[5]
Liu, J. W.; Chen, S.; Papadakis, R.; Li, H. Nanoresolution patterning of hydrogenated graphene by electron beam induced C-H dissociation. Nanotechnology 2018, 29, 415304.
[6]
Lundstedt, A.; Papadakis, R.; Li, H.; Han, Y. Y.; Jorner, K.; Bergman, J.; Leifer, K.; Grennberg, H.; Ottosson, H. White-light photoassisted covalent functionalization of graphene using 2-propanol. Small Methods 2017, 1, 1700214.
[7]
Wang, N.; Samani, M. K.; Li, H.; Dong, L.; Zhang, Z. W.; Su, P.; Chen, S. J.; Chen, J.; Huang, S. R.; Yuan, G. J. et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small 2018, 14, 1801346.
[8]
Li, H.; Papadakis, R.; Jafri, S. H. M.; Thersleff, T.; Michler, J.; Ottosson, H.; Leifer, K. Superior adhesion of graphene nanoscrolls. Commun. Phys. 2018, 1, 44.
[9]
Kumar, R. K.; Chen, X.; Auton, G. H.; Mishchenko, A.; Bandurin, D, A.; Morozov, S. V.; Cao, Y.; Khestanova, E.; Ben Shalom, M.; Kretinin, A. V. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 2017, 357, 181-184.
[10]
Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
[11]
Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80-84.
[12]
Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598-602.
[13]
Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81-90.
[14]
Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.
[15]
Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841-1852.
[16]
Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 2009, 9, 2654-2660.
[17]
Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602.
[18]
Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T,; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.
[19]
Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.
[20]
Li, G. H.; Luican, A.; Lopes Dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109-113.
[21]
Brihuega, I.; Mallet, P.; González-Herrero, H.; Trambly De Laissardière, G.; Ugeda, M. M.; Magaud, L.; Gómez-Rodríguez, J. M.; Ynduráin, F.; Veuillen, J. Y. Unraveling the intrinsic and robust nature of van hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 2012, 109, 196802.
[22]
Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of Graphene’s properties by reversible hydrogenation: Evidence for Graphane. Science 2009, 323, 610-613.
[23]
Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P. Patterning graphene at the nanometer scale via hydrogen desorption. Nano Lett. 2009, 9, 4343-4347.
[24]
Guisinger, N. P.; Rutter, G. M.; Crain, J. N.; First, P. N.; Stroscio, J. A. Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen. Nano Lett. 2009, 9, 1462-1466.
[25]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[26]
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
[27]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[28]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[29]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[30]
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
[31]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[32]
Yan, K.; Peng, H. L.; Zhou, Y.; Li, H,; Liu, Z. F. Formation of bilayer Bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011, 11, 1106-1110.
[33]
Ansari, R.; Mirnezhad, M.; Rouhi, H. Mechanical properties of fully hydrogenated graphene sheets. Solid State Commun. 2015, 201, 1-4.
[34]
Papadakis, R.; Li, H.; Bergman, J.; Lundstedt, A.; Jorner, K.; Ayub, R.; Haldar, S.; Jahn, B. O.; Denisova, A.; Zietz, B.; Lindh, R. et al. Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene. Nat. Commun. 2016, 7, 12962.
[35]
Jones, J. D.; Mahajan, K, K.; Williams, W. H.; Ecton, P. A.; Mo, Y.; Perez, J. M. Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene. Carbon 2010, 48, 2335-2340.
[36]
Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60-63.
[37]
Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143, 101-109.
[38]
He, L.; Wang, H. S.; Chen, L. X.; Wang, X. J.; Xie, H.; Jiang, C. X.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K. et al. Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment. Nat. Commun. 2019, 10, 2815.
[39]
Tang, S. J.; Wang, H. M.; Zhang, Y.; Li, A.; Xie, H.; Liu, X. Y.; Liu, L. Q.; Li, T. X.; Huang, F. Q.; Xie, X. M. et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 2013, 3, 2666.
[40]
Yi, D.; Yang, L.; Xie, S. J.; Saxena, A. Stability of hydrogenated graphene: A first-principles study. RSC Adv. 2015, 5, 20617-20622.
[41]
Averill, F. W.; Morris, J. R.; Cooper, V. R. Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: Graphane and its BN-containing analogues. Phys. Rev. B 2009, 80, 195411.
[42]
Zhou, J.; Wang, Q.; Sun, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 2009, 9, 3867-3870.
File
12274_2020_2744_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 October 2019
Revised: 12 February 2020
Accepted: 04 March 2020
Published: 13 April 2020
Issue date: April 2020

Copyright

© The author(s) 2020

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51905306), the China Postdoctoral Science Fund (No. 2018M642650) and the Special Support for Post-doc Creative Funding of Shandong Province (No. 201902005). We are also grateful for the funding support from the University of Manchester Donator Foundation and Swedish Research Council Formas (No. 2019-01538). Dr. Chloe Holyord from National Graphene Institute, University of Manchester is gratefully acknowledged for the help with AFM measurements. Dr. Linqing Zhang and Mr. Malachy Mcgowan are greatly acknowledged for the experimental support in the sample preparation.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return