Journal Home > Volume 13 , Issue 4

Monolayer MoS2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS2 is seriously limited to its growth quality and carrier mobility. In this work, we report the direct vapor growth and the optoelectronic device of vertically-stacked MoS2/MoSe2 heterostructure, and further discuss the mechanism of improved device performance. The optical and high-resolution atomic characterizations demonstrate that the heterostructure interface is of high-quality without atomic alloying. Electrical transport measurements indicate that the heterostructure transistor exhibits a high mobility of 28.5 cm2/(V·s) and a high on/off ratio of 107. The optoelectronic characterizations prove that the heterostructure device presents an enhanced photoresponsivity of 36 A/W and a remarkable detectivity of 4.8 × 1011 Jones, which benefited from the interface induced built-in electric field and carrier dependent Coulomb screening effect. This work demonstrates that the construction of two-dimensional (2D) semiconductor heterostructures plays a significant role in modifying the optoelectronic device properties of 2D materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures

Show Author's information Fang Li§Boyi Xu§Wen YangZhaoyang QiChao MaYajuan WangXuehong ZhangZhuoran LuoDelang LiangDong Li( )Ziwei Li( )Anlian Pan( )
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials and Engineering, School of Physics and Electronic Science, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China

§ Fang Li and Boyi Xu contributed equally to this work.

Abstract

Monolayer MoS2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS2 is seriously limited to its growth quality and carrier mobility. In this work, we report the direct vapor growth and the optoelectronic device of vertically-stacked MoS2/MoSe2 heterostructure, and further discuss the mechanism of improved device performance. The optical and high-resolution atomic characterizations demonstrate that the heterostructure interface is of high-quality without atomic alloying. Electrical transport measurements indicate that the heterostructure transistor exhibits a high mobility of 28.5 cm2/(V·s) and a high on/off ratio of 107. The optoelectronic characterizations prove that the heterostructure device presents an enhanced photoresponsivity of 36 A/W and a remarkable detectivity of 4.8 × 1011 Jones, which benefited from the interface induced built-in electric field and carrier dependent Coulomb screening effect. This work demonstrates that the construction of two-dimensional (2D) semiconductor heterostructures plays a significant role in modifying the optoelectronic device properties of 2D materials.

Keywords: mobility, photodetector, 2D materials, photoresponsivity, vertical heterostructure

References(41)

[1]
Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors Be? Nano Lett. 2011, 11, 3768-3773.
[2]
Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.
[3]
Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756-3759.
[4]
Zheng, B. Y.; Ma, C.; Li, D.; Lan, J. Y.; Zhang, Z.; Sun, X. X.; Zheng, W. H.; Yang, T. F.; Zhu, C. G.; Ouyang, G. et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 2018, 140, 11193-11197.
[5]
Li, H. L.; Wang, X.; Zhu, X. L.; Duan, X. F.; Pan, A. L. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev. 2018, 47, 7504-7521.
[6]
Seyler, K. L.; Schaibley, J. R.; Gong, P.; Rivera, P.; Jones, A. M.; Wu, S. F.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 2015, 10, 407-411.
[7]
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[8]
Huang, Y. X.; Guo, J. H.; Kang, Y. J.; Ai, Y.; Li, C. M. Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale 2015, 7, 19358-19376.
[9]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[10]
Wu, X. P.; Wang, X.; Li, H. L.; Zeng, Z. X. S.; Zheng, B. Y.; Zhang, D. L.; Li, F.; Zhu, X. L.; Jiang, Y.; Pan, A. L. Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties. Nano Res. 2019, 12, 3123-3128.
[11]
Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
[12]
Bahauddin, S. M.; Robatjazi, H.; Thomann, I. Broadband absorption engineering to enhance light absorption in monolayer MoS2. ACS Photonics 2016, 3, 853-862.
[13]
Li, Z. W.; Liu, C. X.; Rong, X.; Luo, Y.; Cheng, H. T.; Zheng, L. H.; Lin, F.; Shen, B.; Gong, Y. J.; Zhang, S. et al. Tailoring MoS2 Valley-polarized photoluminescence with super chiral near-field. Adv. Mater. 2018, 30, 1801908.
[14]
Li, Z. W.; Xiao, Y. D.; Gong, Y. J.; Wang, Z. P.; Kang, Y. M.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Y. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158-10164.
[15]
Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.
[16]
Komsa, H. P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201.
[17]
Shidpour, R.; Manteghian, M. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2010, 2, 1429-1435.
[18]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[19]
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
[20]
Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.
[21]
Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392-2398.
[22]
Gan, X. T.; Gao, Y. D.; Mak, K. F.; Yao, X. W.; Shiue, R. J.; van der Zande, A.; Trusheim, M. E.; Hatami, F. B.; Heinz, T. F.; Hone, J. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 2013, 103, 181119.
[23]
Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[24]
Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p-n Junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558-7566.
[25]
Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1960.
[26]
Zhou, J. D.; Tang, B. J.; Lin, J. H.; Lv, D. H.; Shi, J.; Sun, L. F.; Zeng, Q. S.; Niu, L.; Liu, F. C.; Wang, X. W. et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures. Adv. Funct. Mater. 2018, 28, 1801568.
[27]
Zhu, C. G.; Sun, X. X.; Liu. H. W.; Zheng, B. Y.; Wang, X. W.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X. L.; Li, D. et al. Non-volatile MoTe2 p-n diodes for optoelectronic logics. ACS Nano 2019, 13, 7216-7222.
[28]
Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi. Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.
[29]
Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2019, 1903800.
[30]
Wang, H. M.; Li, C. H.; Fang, P. F.; Zhang, Z. L.; Zhang, J. Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 2018, 47, 6101-6127.
[31]
Bai, F.; Qi, J. J.; Li, F.; Fang, Y. Y.; Han, W. P.; Wu, H. L.; Zhang, Y. A high-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv. Mater. Interfaces 2018, 5, 1701275.
[32]
Chen, K.; Wan, X.; Xie, W. G.; Wen, J. X.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431-6437.
[33]
Yang, T. F.; Wang, X.; Zheng, B. Y.; Qi, Z. Y.; Ma, C.; Fu, Y. H.; Fu, Y. P.; Hautzinger, M. P.; Jiang, Y.; Li, Z. W. et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 2019, 13, 7996-8003.
[34]
Liu, H. W.; Li, D.; Ma, C.; Zhang, X. H.; Sun, X. X.; Zhu, C. G.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Zhu, X. L. et al. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p-n heterojunctions for high performance optoelectronics. Nano Energy 2019, 59, 66-74.
[35]
Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.
[36]
Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Elect. Mater. 2016, 2, 1600298.
[37]
Wang, J. W.; Li, Z. Q.; Chen, H. Y.; Deng, G. W.; Niu, X. B. Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 2019, 11, 48.
[38]
Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.
[39]
Chen, X. S.; Qiu, Y. F.; Yang, H. H.; Liu, G. B.; Zheng, W.; Feng, W.; Cao, W. W.; Hu, W. P.; Hu, P. A. In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2-MoSe2 lateral heterostructures and photodetector application. ACS Appl. Mater. Interfaces 2017, 9, 1684-1691.
[40]
Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-Area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419-2425.
[41]
Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 01211.
File
12274_2020_2743_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 January 2020
Revised: 25 February 2020
Accepted: 04 March 2020
Published: 16 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51525202, 51902098, 51772084, 61574054, 51972105, and 11904098,), the Hunan Provincial Natural Science Foundation of China (No. 2018RS3051), the Joint Funds of the National Natural Science Foundation of China (No. U19A2090), and Hunan Provincial (China) Natural Science Foundation for Excellent Young Scholars (No. 2019JJ30004).

Return