Journal Home > Volume 13 , Issue 4

Since Akira Yoshino first proposed the usage of the carbonaceous materials as an anode of lithium ion batteries (LIBs) in 1985, carbonaceous materials such as graphite and graphene have been widely considered as LIB anodes. Here, we explored the application of novel carbonaceous LIB anodes incorporating graphene quantum dots (GQDs). We fabricated a freestanding all-carbon electrode based on a porous carbon nanotube (CNT) sponge via a facile in-situ hydrothermal deposition technique, creating coaxial structure of GQD-coated CNTs (GQD@CNTs) through electrostatic interaction and π-π stacking with tunable loading and functionalization. This hybrid structure combined conductive CNTs with highly active GQDs, in which GQDs with predesigned functional groups provided massive storage sites for Li ions and the 3D CNT frameworks avoided the agglomeration of GQDs, together contributing to a high specific capacity (700 mAh·g-1 at 100 mA·g-1 after 100 cycles) and rate performance. Even at a high current density of 1,000 mA·g-1, the reversible specific capacity remained at 483 mAh·g-1 after 350 cycles. In particular, the mechanism study demonstrated the important role of oxygen functional groups of GQDs in promoting the performance of the LIB anodes by controlled grafting of GQDs onto various porous-carbon and metal-foam based structures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes

Show Author's information Xuewei Zhao1Yizeng Wu1Yunsong Wang1Huaisheng Wu1Yawei Yang2Zhipeng Wang1Linxiu Dai1Yuanyuan Shang2( )Anyuan Cao1( )
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

Abstract

Since Akira Yoshino first proposed the usage of the carbonaceous materials as an anode of lithium ion batteries (LIBs) in 1985, carbonaceous materials such as graphite and graphene have been widely considered as LIB anodes. Here, we explored the application of novel carbonaceous LIB anodes incorporating graphene quantum dots (GQDs). We fabricated a freestanding all-carbon electrode based on a porous carbon nanotube (CNT) sponge via a facile in-situ hydrothermal deposition technique, creating coaxial structure of GQD-coated CNTs (GQD@CNTs) through electrostatic interaction and π-π stacking with tunable loading and functionalization. This hybrid structure combined conductive CNTs with highly active GQDs, in which GQDs with predesigned functional groups provided massive storage sites for Li ions and the 3D CNT frameworks avoided the agglomeration of GQDs, together contributing to a high specific capacity (700 mAh·g-1 at 100 mA·g-1 after 100 cycles) and rate performance. Even at a high current density of 1,000 mA·g-1, the reversible specific capacity remained at 483 mAh·g-1 after 350 cycles. In particular, the mechanism study demonstrated the important role of oxygen functional groups of GQDs in promoting the performance of the LIB anodes by controlled grafting of GQDs onto various porous-carbon and metal-foam based structures.

Keywords: carbon nanotubes, graphene quantum dots, lithium ion batteries, anodes, oxygen functional groups

References(49)

[1]
Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X. G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661-4666.
[2]
Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136-3142.
[3]
Mo, R. W.; Li, F.; Tan, X. Y.; Xu, P. C.; Tao, R.; Shen, G. R.; Lu, X.; Liu, F.; Shen, L.; Xu, B. et al. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat. Commun. 2019, 10, 1474.
[4]
Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.
[5]
Eom, J.; Kim, D.; Kwon, H. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J. Power Sources 2006, 157, 507-514.
[6]
Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613-3618.
[7]
Li, X. F.; Hu, Y. H.; Liu, J.; Lushington, A.; Li, R. Y.; Sun, X. L. Structurally tailored graphene nanosheets as lithium ion battery anodes: An insight to yield exceptionally high lithium storage performance. Nanoscale 2013, 5, 12607-12615.
[8]
Ye, M. H.; Hu, C. G.; Lv, L. X.; Qu, L. T. Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life. J. Power Sources 2016, 305, 106-114.
[9]
Zhao, K. N.; Zhang, L.; Xia, R.; Dong, Y. F.; Xu, W. W.; Niu, C. J.; He, L.; Yan, M. Y.; Qu, L. B.; Mai, L. Q. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588-594.
[10]
Sahoo, M.; Ramaprabhu, S. Effect of wrinkles on electrochemical performance of multiwalled carbon nanotubes as anode material for Li ion battery. Electrochim. Acta 2015, 186, 142-150.
[11]
Li, S. S.; Luo, Y. H.; Lv, W.; Yu, W. J.; Wu, S. D.; Hou, P. X.; Yang, Q. H.; Meng, Q. B.; Liu, C.; Cheng, H. M. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Materi. 2011, 1, 486-490.
[12]
Luo, Z. M.; Qi, G. Q.; Chen, K. Y.; Zou, M.; Yuwen, L. H.; Zhang, X. W.; Huang, W.; Wang, L. H. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2739-2744.
[13]
Wang, L.; Wang, Y. L.; Xu, T.; Liao, H. B.; Yao, C. J.; Liu, Y.; Li, Z.; Chen, Z. W.; Pan, D. Y.; Sun, L. T. et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 2014, 5, 5357.
[14]
Ye, R. Q.; Xiang, C. S.; Lin, J.; Peng, Z. W.; Huang, K. W.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C. C.; Ruan, G. D. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4, 2943.
[15]
Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734-738.
[16]
Diao, S. L.; Zhang, X. J.; Shao, Z. B.; Ding, K.; Jie, J. S.; Zhang, X. H. 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 2017, 31, 359-366.
[17]
Gao, P.; Ding, K.; Wang, Y.; Ruan, K. Q.; Diao, S. L.; Zhang, Q.; Sun, B. Q.; Jie, J. S. Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 2014, 118, 5164-5171.
[18]
Tetsuka, H.; Nagoya, A.; Asahi, R. Highly luminescent flexible amino-functionalized graphene quantum dots@cellulose nanofiber-clay hybrids for white-light emitting diodes. J. Mater. Chem. C 2015, 3, 3536-3541.
[19]
Kim, D. H.; Kim, T. W. Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots. Nano Energy 2017, 32, 441-447.
[20]
Hu, Y.; Zhao, Y.; Lu, G. W.; Chen, N.; Zhang, Z. P.; Li, H.; Shao, H. B.; Qu, L. T. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors. Nanotechnology 2013, 24, 195401.
[21]
Jia, H. N.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv. Sci. 2018, 5, 1700887.
[22]
Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015, 54, 7176-7180.
[23]
Wu, X. C.; Guo, S. W.; Zhang, J. Y. Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts. Chem. Commun. 2015, 51, 6318-6321.
[24]
Wang, L.; Li, W. T.; Wu, B.; Li, Z.; Wang, S. L.; Liu, Y.; Pan, D. Y.; Wu, M. H. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 2016, 300, 75-82.
[25]
Ananthanarayanan, A.; Wang, X. W.; Routh, P.; Sana, B.; Lim, S.; Kim, D. H.; Lim, K. H.; Li, J.; Chen, P. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 2014, 24, 3021-3026.
[26]
Zhu, C. R.; Chao, D. L.; Sun, J.; Bacho, I. M.; Fan, Z. X.; Ng, C. F.; Xia, X. H.; Huang, H.; Zhang, H.; Shen, Z. X. et al. Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots. Adv. Mater. Interfaces 2015, 2, 1400499.
[27]
Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565-573.
[28]
Jing, M. J.; Wang, J. F.; Hou, H. S.; Yang, Y. C.; Zhang, Y.; Pan, C. C.; Chen, J.; Zhu, Y. R.; Ji, X. B. Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 16824-16830.
[29]
Balogun, M. S.; Luo, Y.; Lyu, F. Y.; Wang, F. X.; Yang, H.; Li, H. B.; Liang, C. L.; Huang, M.; Huang, Y. C.; Tong, Y. X. Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9733-9744.
[30]
Zhang, W. F.; Xu, T.; Liu, Z. W.; Wu, N. L.; Wei, M. D. Hierarchical TiO2-x imbedded with graphene quantum dots for high-performance lithium storage. Chem. Commun. 2018, 54, 1413-1416.
[31]
Zhang, Q.; Sun, C. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries. Chem. Eng. J. 2019, 371, 245-251.
[32]
Wu, M. H.; Chen, H. Q.; Lv, L. P.; Wang, Y. Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance. Chem. Eng. J. 2019, 373, 985-994.
[33]
Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621.
[34]
Zou, M. C.; Ma, Z. M.; Wang, Q. F.; Yang, Y. B.; Wu, S. T.; Yang, L. S.; Hu, S.; Xu, W. J.; Han, P. C.; Zou, R. Q. et al. Coaxial TiO2-carbon nanotube sponges as compressible anodes for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 7398-7405.
[35]
Zhang, H.; Wang, Y. S.; Zhao, W. Q.; Zou, M. C.; Chen, Y. J.; Yang, L. S.; Xu, L.; Wu, H. S.; Cao, A. MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2017, 9, 37813-37822.
[36]
Hu, Y.; Zhao, Y.; Lu, G. W.; Chen, N.; Zhang, Z. P.; Li, H.; Shao, H. B.; Qu, L. T. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors. Nanotechnology 2013, 24, 195401.
[37]
Jin, Y. C.; Hu, C. G.; Dai, Q. B.; Xiao, Y.; Lin, Y.; Connell, J. W.; Chen, F. Y.; Dai, L. M. High-performance Li-CO2 batteries based on metal-free carbon quantum dot/holey graphene composite catalysts. Adv. Funct. Mater. 2018, 28, 1804630.
[38]
Zhang, J.; Xu, T. X.; Cong, Y.; Zhang, Y. Q.; Li, X. K.; Dong, Z. J.; Li, Y. J.; Yuan, G. M.; Zhang, J.; Cui, Z. W. Improved rate performance and cycling stability of graphitized mesoporous carbon as anode materials for lithium-ion batteries. J. Mater. Sci. 2019, 54, 648-658.
[39]
Song, A. L.; Cao, L.; Yang, W.; Yang, W.; Wang, L. X.; Ma, Z. P.; Shao, G. J. In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction. Carbon 2019, 142, 40-50.
[40]
Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M. M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123-10129.
[41]
Vecera, P.; Chacón-Torres, J. C.; Pichler, T.; Reich, S.; Soni, H. R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 2017, 8, 15192.
[42]
Xiong, D. B.; Li, X. F.; Bai, Z. M.; Shan, H.; Fan, L. L.; Wu, C. X.; Li, D. J.; Lu, S. G. Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 10643-10651.
[43]
Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B. S.; Hammond, P. T.; Shao-Horn. Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531-537.
[44]
Bachman, J. C.; Kavian, R.; Graham, D. J.; Kim, D. Y.; Noda, S.; Nocera, D. G.; Shao-Horn, Y.; Lee, S. W. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nat. Commun. 2015, 6, 7040.
[45]
Li, X. F.; Geng, D. S.; Zhang, Y.; Meng, X. B.; Li, R. Y.; Sun, X. L. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem, Commun. 2011, 13, 822-825.
[46]
Zhang, J. X.; Xie, Z. W.; Li, W.; Dong, S. Q.; Qu, M. Z. High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon 2014, 74, 153-162.
[47]
Byon, H. R.; Gallant, B. M.; Lee, S. W.; Shao-Horn, Y. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 2013, 23, 1037-1045.
[48]
Liu, T. Y.; Kim, K. C.; Kavian, R.; Jang, S. S.; Lee, S. W. High-density lithium-ion energy storage utilizing the surface redox reactions in folded graphene films. Chem. Mater. 2015, 27, 3291-3298.
[49]
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.
File
12274_2020_2741_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 January 2020
Revised: 11 February 2020
Accepted: 03 March 2020
Published: 07 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

A. Y. C. appreciated the financial support from the National Natural Science Foundation of China (No. 51672005). S. Y. Y. appreciated the financial support from the National Natural Science Foundation of China (No. 51872267). Z. X. W. thanks Qihang Gong for his support and encouragement all the time.

Return