Journal Home > Volume 13 , Issue 4

An ordered hollow MoS2 nanocages/RGO nanocomposite is constructed by a simple solvothermal-assisted assembly method combined with freeze-drying and annealing. In this novel nanostructure, hollow MoS2 nanocages are homogeneously distributed on graphene sheets with a tight bond of C-O-Mo. The nanosized and hollow MoS2 nanocages can effectively accommodate the huge volume change during charge/discharge process and increase the number of electrochemical reaction active sites, accelerating the kinetics of lithiation/delithiation. The tight C-O-Mo bond between graphene and MoS2 further reinforces the structural stability, thus improve the electrical conductivity and substantially enhance the lithium storage performance of MoS2 anode material. As a result, this novel nanocomposite shows a long-cycle stability of 717.4 mAh·g-1 after 800 cycles at a high current density of 3 A·g-1, exhibiting great potential as an anode nanocomposite for advanced lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Solvothermal-assisted assembly of MoS2 nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery

Show Author's information Dafang He1Yi Yang1Zhenmin Liu2Jin Shao1Jian Wu1Shun Wang1Liming Shen1( )Ningzhong Bao1( )
State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
Institute of NBC Defence, Beijing 102205, China

Abstract

An ordered hollow MoS2 nanocages/RGO nanocomposite is constructed by a simple solvothermal-assisted assembly method combined with freeze-drying and annealing. In this novel nanostructure, hollow MoS2 nanocages are homogeneously distributed on graphene sheets with a tight bond of C-O-Mo. The nanosized and hollow MoS2 nanocages can effectively accommodate the huge volume change during charge/discharge process and increase the number of electrochemical reaction active sites, accelerating the kinetics of lithiation/delithiation. The tight C-O-Mo bond between graphene and MoS2 further reinforces the structural stability, thus improve the electrical conductivity and substantially enhance the lithium storage performance of MoS2 anode material. As a result, this novel nanocomposite shows a long-cycle stability of 717.4 mAh·g-1 after 800 cycles at a high current density of 3 A·g-1, exhibiting great potential as an anode nanocomposite for advanced lithium-ion batteries.

Keywords: nanocomposites, graphene, lithium-ion battery, MoS2 nanocages

References(43)

[1]
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
[2]
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
[3]
Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
[4]
Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245-4269.
[5]
Hassoun, J.; Lee, K. S.; Sun, Y. K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139-3143.
[6]
Zha, C. Y.; He, D. F.; Zou, J. W.; Shen, L. M.; Zhang, X. Y.; Wang, Y. F.; Kung, H. H.; Bao, N. Z. A minky-dot-fabric-shaped composite of porous TiO2 microsphere/reduced graphene oxide for lithium ion batteries. J. Mater. Chem. A 2014, 2, 16931-16938.
[7]
Deng, Z. N.; Jiang, H.; Hu, Y. J.; Liu, Y.; Zhang, L.; Liu, H. L.; Li, C. Z. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 2017, 29, 1603020.
[8]
Chen, B.; Meng, Y. H.; He, F.; Liu, E. Z.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 2017, 41, 154-163.
[9]
Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964-969.
[10]
Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25, 1180-1184.
[11]
Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252-4254.
[12]
Wang, X. L.; Li, G.; Seo, M. H.; Hassan, F. M.; Hoque M. A.; Chen, Z. W. Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1501106.
[13]
Wu, M. H.; Zhan, J.; Wu, K.; Li, Z.; Wang, L.; Geng, B. J.; Wang L. J.; Pan, D. Y. Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J. Mater. Chem. A 2017, 5, 14061-14069.
[14]
Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167-6196.
[15]
Jeong, Y. C.; Kim, J. H.; Kwon, S. H.; Oh, J. Y.; Park, J.; Jung, Y.; Lee, S. G.; Yang, S. J.; Park, C. R. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J. Mater. Chem. A 2017, 5, 23909-23918.
[16]
Tan C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713-2731.
[17]
Wu, M. H.; Xia, S. S.; Ding, J. F.; Zhao, B.; Jiao, Y. L.; Du, A. J.; Zhang, H. J. Growth of MoS2 nanoflowers with expanded interlayer distance onto N-doped graphene for reversible lithium storage. ChemElectroChem 2018, 5, 2263-2270.
[18]
Bulusheva, L. G.; Koroteev, V. O.; Stolyarova, S. G.; Chuvilin, A. L.; Plyusnin, P. E.; V. Shubin, Y. O.; Vilkov, Y.; Chen, X. H.; Song, H. H.; Okotrub, A. V. Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Elertrochim. Acta 2018, 283, 45-53.
[19]
Pham-Cong, D.; Choi, J. H.; Yun, J.; Bandarenka, A. S.; Kim, J.; Braun, P. V.; Jeong, S. Y.; Cho, C. R. Synergistically enhanced electrochemical performance of hierarchical MoS2/TiNb2O7 hetero-nanostructures as anode materials for Li-ion batteries. ACS Nano 2017, 11, 1016-1033.
[20]
Wang, Y. S.; Ma, Z. M.; Chen, Y. J.; Zou, M. C.; Yousaf, M.; Yang, Y. B.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv. Mater. 2016, 28, 10175-10181.
[21]
Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.
[22]
Ma, T. T.; Liu, X. H.; Sun, L.; Xu, Y. S.; Zheng, L. L.; Zhang, J. MoS2 nanosheets@N-carbon microtubes: A rational design of sheet-on-tube architecture for enhanced lithium storage performances. Electrochim. Acta 2019, 293, 432-438.
[23]
Zhang, Z. J.; Zhao, H. L.; Teng, Y. Q.; Chang, X. W.; Xia, Q.; Li, Z. L.; Fang, J. J.; Du Z. H.; Świerczek, K. Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: Electrochemical application for highly stable and ultrafast lithium storage. Adv. Energy Mater. 2018, 8, 1700174.
[24]
Wang, J.; Liu, J. L.; Chao, D. L.; Yan, J. X.; Lin, J. Y.; Shen, Z. X. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 2014, 26, 7162-7169.
[25]
Jiang, Y.; Guo, Y. B.; Lu, W. J.; Feng, Z. Y.; Xi, B. J.; Kai, S. S.; Zhang, J. H.; Feng, J. K.; Xiong, S. L. Rational incorporated MoS2/ SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 27697-27706.
[26]
Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720-4728.
[27]
Wang, T. Y.; Chen, S. Q.; Pang, H.; Xue, H. G.; Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 2017, 4, 1600289.
[28]
Yang, H.; Wang, M.; Liu, X. W.; Jiang, Y.; Yu, Y. MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 2018, 11, 3844-3853.
[29]
Zhao, X. J.; Wang, G.; Liu, X. J.; Zheng, X. L.; Wang, H. Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res. 2018, 11, 3603-3618.
[30]
Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film-foam-film structure for enhanced lithium storage. Angew. Chem., Int. Ed. 2016, 55, 12783-12788.
[31]
Hu, X.; Li, Y.; Zeng, G.; Jia, J. C.; Zhan, H. B.; Wen, Z. H. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 2018, 12, 1592-1602.
[32]
Zhang, C. L.; Jiang, Z. H.; Lu, B. R.; Liu, J. T.; Cao, F. H.; Li, H.; Yu, Z. L.; Yu, S. H. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage. Nano Energy 2019, 61, 104-110.
[33]
He, D. F.; Shen, L. M.; Zhang, X. Y.; Wang, Y. F.; Bao, N. Z.; Kung, H. H. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J. 2014, 60, 2757-2764.
[34]
Sun, W. Y.; Hu, Z.; Wang, C. Y.; Tao, Z. L.; Chou, S. L.; Kang, Y. M.; Liu, H. K. Effects of carbon content on the electrochemical performances of MoS2-C nanocomposites for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22168-22174.
[35]
Jia, Y. L.; Wan, H. Q.; Chen, L.; Zhou, H. D.; Chen, J. M. Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance. J. Power Sources 2017, 354, 1-9.
[36]
David, L.; Bhandavat, R.; Barrera, U.; Singh, G. Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci. Rep. 2015, 5, 9792.
[37]
Zhang, Y. Q.; Tao, H. C.; Ma, H.; Du, S. L.; Li, T.; Zhang, Y. K.; Li, J. H.; Yang, X. L. Three-dimensional MoO2@few-layered MoS2 covered by S-doped graphene aerogel for enhanced lithium ion storage. Electrochim. Acta 2018, 283, 619-627.
[38]
He, D. F.; Bai, F. J.; Li, L. X.; Shen, L. M.; Kung, H. H.; Bao, N. Z. Fabrication of sandwich-structured Si nanoparticles-graphene nanocomposites for high-performance lithium-ion batteries. Electrochim. Acta 2015, 169, 409-415.
[39]
Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837-3848.
[40]
Hwang, H.; Kim, H. J.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.
[41]
Li, X.; Zhang, J. Y.; Wang, R.; Huang, H. Y.; Xie, C.; Li, Z. H.; Li, J.; Niu, C. M. In situ synthesis of carbon nanotube hybrids with alternate MoC and MoS2 to enhance the electrochemical activities of MoS2. Nano Lett. 2015, 15, 5268-5272.
[42]
Kong, D. B.; He, H. Y.; Song, Q.; Wang, B.; Lv, W.; Yang, Q. H.; Zhi, L. J. Rational design of MoS2@graphene nanocables: Towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 2014, 7, 3320-3325.
[43]
Zhong, Y.; Shi, T. L.; Huang, Y. Y.; Cheng, S. Y.; Chen, C.; Liao, G. L.; Tang, Z. R. Three-dimensional MoS2/graphene aerogel as binder-free electrode for Li-ion battery. Nanoscale Res. Lett. 2019, 14, 85.
File
12274_2020_2739_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 December 2019
Revised: 06 February 2020
Accepted: 29 February 2020
Published: 14 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51772150 and 21808103), Natural Science Foundation of Jiangsu Province (No. BK20171012), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors are grateful to Dr. Lin Gao and the Reviewers for their helpful suggestions and comments.

Return