Journal Home > Volume 13 , Issue 4

The application of metal nanoparticles as an efficient drug delivery system is one of the directions of cancer therapy development. However, this strategy requires precise information about how the drug interacts with the applied nanocarrier. In this study, atomic force microscopy combined with infrared spectroscopy (AFM-IR) was used for the first time to investigate the erlotinib adsorption structure on two different types of 15 nm metal nanoparticle mono-layers, namely, silver nanoparticle (AgNP) and gold nanoparticle (AuNP) mono-layers. Because the metal nanoparticles are loosely bound samples, only the tapping AFM-IR mode is suitable for the collection of IR maps and spectra for such a system. The obtained results indicated the relevance of the AFM-IR technique for characterizing drug interactions with a metal mono-layer surface. The investigated drug interacts with the AgNPs mainly through phenyl rings and methoxy moieties, while quinazoline, amino, and ethoxy moieties appear to be farther from the surface. For the AuNPs, the interaction occurs through both the phenyl ring and the quinazoline moiety. Additionally, the aliphatic groups of erlotinib directly participate in this interaction. The novelty of the present work is also related to the use of the tapping AFM-IR mode to study metal NP mono-layers with a drug adsorbed on them. The collected IR maps for the most enhanced erlotinib bands show specific areas with very high signal intensity. The connection between these areas and the "hot spots" typical for the surface plasmon resonance phenomenon of metals is considered.


menu
Abstract
Full text
Outline
About this article

Nanoscale image of the drug/metal mono-layer interaction: Tapping AFM-IR investigations

Show Author's information Natalia Piergies1( )Alexandre Dazzi2Ariane Deniset-Besseau2Jérémie Mathurin2Magdalena Oćwieja3Czesława Paluszkiewicz1Wojciech M. Kwiatek1
Institute of Nuclear, Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Univ. of Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland

Abstract

The application of metal nanoparticles as an efficient drug delivery system is one of the directions of cancer therapy development. However, this strategy requires precise information about how the drug interacts with the applied nanocarrier. In this study, atomic force microscopy combined with infrared spectroscopy (AFM-IR) was used for the first time to investigate the erlotinib adsorption structure on two different types of 15 nm metal nanoparticle mono-layers, namely, silver nanoparticle (AgNP) and gold nanoparticle (AuNP) mono-layers. Because the metal nanoparticles are loosely bound samples, only the tapping AFM-IR mode is suitable for the collection of IR maps and spectra for such a system. The obtained results indicated the relevance of the AFM-IR technique for characterizing drug interactions with a metal mono-layer surface. The investigated drug interacts with the AgNPs mainly through phenyl rings and methoxy moieties, while quinazoline, amino, and ethoxy moieties appear to be farther from the surface. For the AuNPs, the interaction occurs through both the phenyl ring and the quinazoline moiety. Additionally, the aliphatic groups of erlotinib directly participate in this interaction. The novelty of the present work is also related to the use of the tapping AFM-IR mode to study metal NP mono-layers with a drug adsorbed on them. The collected IR maps for the most enhanced erlotinib bands show specific areas with very high signal intensity. The connection between these areas and the "hot spots" typical for the surface plasmon resonance phenomenon of metals is considered.

Keywords: atomic force microscopy, metal nanoparticle mono-layer, drug’s adsorption, infrared nanospectroscopy, erlotinib

References(67)

[1]
Chen, S. Z.; Hao, X. H.; Liang, X. J.; Zhang, Q.; Zhang, C. M.; Zhou, G. Q.; Shen, S. G.; Jia, G.; Zhang, J. C. Inorganic nanomaterials as carriers for drug delivery. J. Biomed. Nanotechnol. 2016, 12, 1-27.
[2]
Cho, H. Y.; Lee, Y. B. Nano-sized drug delivery systems for lymphatic delivery. J. Nanosci. Nanotechnol. 2014, 14, 868-880.
[3]
Zhang, J.; Yuan, Z. F.; Wang, Y.; Chen, W. H.; Luo, G. F.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc. 2013, 135, 5068-5073.
[4]
Cross, M. J.; Berridge, B. R.; Clements, P. J. M.; Cove-Smith, L.; Force, T. L.; Hoffmann, P.; Holbrook, M.; Lyon, A. R.; Mellor, H. R.; Norris, A. A. et al. Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury. Br. J. Pharmacol. 2015, 172, 957-974.
[5]
Da Silva, C. G.; Peters, G. J.; Ossendorp, F.; Cruz, L. J. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother. Pharmacol. 2017, 80, 881-894.
[6]
Fleischmann, M.; Hendra, P. J; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.
[7]
Masatoshi, O. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull. Chem. Soc. Jpn. 1997, 70, 2861-2880.
[8]
Brundle, C. R.; Morawitz, H. Vibrations at Surfaces; Elsevier: Amsterdam, 1983.
[9]
Pearce, H. A.; Sheppard, N. Possible importance of a “metal-surface selection rule” in the interpretation of the infrared spectra of molecules adsorbed on particulate metals; infrared spectra from ethylene chemisorbed on silica-supported metal catalysts. Surf. Sci. 1976, 59, 205-217.
[10]
Greenler, R. G.; Snider, D. R.; Witt, D.; Sorbello, R. S. The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf. Sci. 1982, 118, 415-428.
[11]
Osawa, M. Surface-enhanced infrared absorption. In Near-Field Optics and Surface Plasmon Polaritons. Kawata, S., Ed.; Springer: Berlin, Heidelberg, 2001; pp 163-187.
[12]
Huck, C.; Neubrech, F.; Vogt, J.; Toma, A.; Gerbert, D.; Katzmann, J.; Härtling, T.; Pucci, A. Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 2014, 8, 4908-4914.
[13]
Kundu, J.; Le, F.; Nordlander, P.; Halas, N. J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 2008, 452, 115-119.
[14]
Gersten, J. I.; Nitzan, A. Photophysics and photochemistry near surfaces and small particles. Surf. Sci. 1985, 158, 165-189.
[15]
Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys. Condens. Matter 1992, 4, 1143-1212.
[16]
Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L. E. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 2012, 3, 684.
[17]
Ueno, K.; Sun, Q.; Mino, M.; Itoh, T.; Oshikiri, T.; Misawa, H. Surface plasmon optical antennae in the infrared region with high resonant efficiency and frequency selectivity. Opt. Express 2016, 24, 17728-17737.
[18]
Haynes, C. L.; McFarland, A. D.; Zhao, L. L.; van Duyne, R. P.; Schatz, G. C.; Gunnarsson, L.; Prikulis, J.; Kasemo, B.; Käll, M. Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 2003, 107, 7337-7342.
[19]
Pucci, A.; Neubrech, F.; Weber, D.; Hong, S.; Toury, T.; Lamy de la Chapelle, M. Surface enhanced infrared spectroscopy using gold nanoantennas. Phys. Status Solid B 2010, 247, 2071-2074.
[20]
Lasch, P.; Naumann, D. Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim. Biophys. Acta 2006, 1758, 814-829.
[21]
Reddy, R. K.; Walsh, M. J.; Schulmerich, M. V.; Carney, P. S.; Bhargava, R. High-definition infrared spectroscopic imaging. Appl. Spectrosc. 2013, 67, 93-105.
[22]
Dazzi, A.; Prater, C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146-5173.
[23]
Dazzi, A.; Prater, C. B.; Hu, Q. C.; Chase, D. B.; Rabolt, J. F.; Marcott, C. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 2012, 66, 1365-1384.
[24]
Khanal, D.; Kondyurin, A.; Hau, H.; Knowles, J. C.; Levinson, O.; Ramzan, I.; Fu, D.; Marcott, C.; Chrzanowski, W. Biospectroscopy of nanodiamond-induced alterations in conformation of intra- and extracellular proteins: A nanoscale IR study. Anal. Chem. 2016, 88, 7530-7538.
[25]
Dazzi, A.; Glotin, F.; Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 2010, 107, 124519.
[26]
Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005, 30, 2388-2390.
[27]
Kennedy, E.; Al-Majmaie, R.; Al-Rubeai, M. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging. J. Biophotonics 2015, 8, 133-141.
[28]
Policar, C.; Waern, J. B.; Plamont, M. A.; Clède, S.; Mayet, C.; Prazeres, R.; Ortega, J. M.; Vessières, A.; Dazzi, A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angew. Chem. 2011, 123, 890-894.
[29]
Deniset-Besseau, A.; Prater, C. B.; Virolle, M. J.; Dazzi, A. Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications. J. Phys. Chem. Lett. 2014, 5, 654-658.
[30]
Mayet, C.; Dazzi, A.; Prazeres, R.; Ortega, J. M.; Jaillard, D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst 2010, 135, 2540-2545.
[31]
Marcott, C.; Lo, M.; Kjoller, K.; Domanov, Y.; Balooch, G.; Luengo, G. S. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source. Exp. Dermatol. 2013, 22, 419-421.
[32]
Paluszkiewicz, C. Piergies, N.; Chaniecki, P.; Rękas, M.; Miszczyk, J.; Kwiatek, W. M. Differentiation of protein secondary structure in clear and opaque human lenses: AFM-IR studies. J. Pharm. Biomed. Anal. 2017, 139, 125-132.
[33]
Mikhalchan, A.; Banas, A. M.; Banas, K.; Borkowska, A. M.; Nowakowski, M.; Breese, M. B. H.; Kwiatek, W. M.; Paluszkiewicz, C.; Tay, T. E. Revealing chemical heterogeneity of CNT fiber nanocomposites via nanoscale chemical imaging. Chem. Mater. 2018, 30, 1856-1864.
[34]
Latour, G.; Robinet, L.; Dazzi, A.; Portier, F.; Deniset-Besseau, A.; Schanne-Klein, M. C. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments. Sci. Rep. 2016, 6, 26344.
[35]
Mathurin, J; Pancani, E; Deniset-Besseau, A; Kjoller, K; Prater, C. B; Gref, R; Dazzi, A. How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR. Analyst 2018, 143, 5940-5949.
[36]
Tuteja, M; Kang, M; Leal, C; Centrone, A. Nanoscale partitioning of paclitaxel in hybrid lipid-polymer membranes. Analyst 2018, 143, 3808-3813.
[37]
Piergies, N.; Pięta, E.; Paluszkiewicz, C.; Domin, H.; Kwiatek, W. M. Polarization effect in tip-enhanced infrared nanospectroscopy studies of the selective Y5 receptor antagonist Lu AA33810. Nano Res. 2018, 11, 4401-4411.
[38]
Pięta, E.; Paluszkiewicz, C.; Kwiatek, W. M. Multianalytical approach for surface- and tip-enhanced infrared spectroscopy study of a molecule-metal conjugate: Deducing its adsorption geometry. Phys. Chem. Chem. Phys. 2018, 20, 27992-28000.
[39]
Arora, A.; Scholar, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 2005, 315, 971-979.
[40]
Pearson, M. A.; Fabbro, D. Targeting protein kinases in cancer therapy: A success? Expert Rev. Anticancer Ther. 2004, 4, 1113-1124.
[41]
Gorzalczany, Y.; Gilad, Y.; Amihai, D.; Hammel, I.; Sagi-Eisenberg, R.; Merimsky, O. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: A beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 2011, 310, 207-215.
[42]
Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat. Rev. Cancer 2006, 6, 803-812.
[43]
Bianchini, D.; Jayanth, A.; Chua, Y. J.; Cunningham, D. Epidermal growth factor receptor inhibitor-related skin toxicity: Mechanisms, treatment, and its potential role as a predictive marker. Clin. Colorectal Cancer 2008, 7, 33-43.
[44]
Piergies, N.; Oćwieja, M.; Paluszkiewicz, C.; Kwiatek, W. M. Identification of erlotinib adsorption pattern onto silver nanoparticles: SERS studies. J. Raman Spectrosc. 2018, 49, 1265-1273.
[45]
Oćwieja, M.; Adamczyk, Z. Controlled release of silver nanoparticles from monolayers deposited on PAH covered mica. Langmuir 2013, 29, 3546-3555.
[46]
Maciejewska-Prończuk, J.; Morga, M.; Adamczyk, Z.; Oćwieja, M.; Zimowska, M. Homogeneous gold nanoparticle monolayers—QCM and electrokinetic characteristics. Colloids Surf. A 2017, 514, 226-235.
[47]
Ghosh, H.; Bürgi, T. Mapping infrared enhancement around gold nanoparticles using polyelectrolytes. J. Phys. Chem. C 2017, 121, 2355-2363.
[48]
Piergies, N.; Paluszkiewicz, C.; Kwiatek, W. M. Vibrational fingerprint of erlotinib: FTIR, RS, and DFT studies. J. Spectrosc. 2019, 2019, 9191328.
[49]
Qi, Y. J.; Hu, Y. J.; Xie, M.; Xing, D.; Gu, H. M. Adsorption of aniline on silver mirror studied by surface-enhanced Raman scattering spectroscopy and density functional theory calculations. J. Raman Spectrosc. 2011, 42, 1287-1293.
[50]
Dornhaus, R.; Long, M. B.; Benner, R. E.; Chang, R. K. Time development of SERS from pyridine, pyrimidine, pyrazine, and cyanide adsorbed on Ag electrodes during an oxidation-reduction cycle. Surf. Sci. 1980, 93, 240-262.
[51]
Muniz-Miranda, M.; Neto, N.; Sbrana, G. Surface-enhanced Raman spectra of pyrazine, pyrimidine, and pyridazine adsorbed on silver sols. J. Phys. Chem. 1988, 92, 954-959.
[52]
Lee, T. W.; Kim, K.; Kim, M. S. Raman spectroscopy of phenylacetylene adsorbed on silver surfaces. J. Mol. Struct. 1992, 274, 59-73.
[53]
Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. Meyer, R. A., Ed.; John Wiley & Sons Ltd: Chichester, 2000; pp 1-23.
[54]
Varfolomeev, M. A.; Abaidullina, D. I.; Klimovitskii, A. E.; Solomonov, B. N. Solvent effect on stretching vibration frequencies of the N-H and O-H groups of diphenylamine and phenol in complexes with various proton acceptors: Cooperative effect. Russ. J. Gen. Chem. 2007, 77, 1742-1748.
[55]
King, P. L.; Ramsey, M. S.; McMillan, P. F.; Swayze, G. A. Laboratory Fourier transform infrared spectroscopy methods for geologic samples. In Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing. King, P. L.; Ramsey, M. S.; Swayze, G. A., Eds.; Mineralogical Association of Canada: London, 2004; pp 57-92.
[56]
Xiong, M.; Ye, J. Reproducibility in surface-enhanced Raman spectroscopy. J. Shanghai Jiaotong Univ. (Sci.) 2014, 19, 681-690
[57]
Dovbeshko, G.; Fesenko, O.; Chegel, V.; Shirshov, Y.; Kosenkov, D.; Nazarova, A. Effect of nanostructured gold surface on the SEIRA spectra of nucleic acid, albumin, α-glycine and guanine. Asian Chem. Lett. 2006, 10, 33-44.
[58]
Fudickar, W.; Pavashe, P.; Linker, T. Thiocarbohydrates on gold nanoparticles: Strong influence of stereocenters on binding affinity and interparticle forces. Chem. -Eur. J. 2017, 23, 8685-8693.
[59]
Guerrini, L.; Jurasekova, Z.; Domingo, C.; Pérez-Méndez, M.; Leyton, P.; Campos-Vallette, M.; Garcia-Ramos, J. V.; Sanchez-Cortes, S. Importance of metal-adsorbate interactions for the surface-enhanced Raman scattering of molecules adsorbed on plasmonic nanoparticles. Plasmonics 2007, 2, 147-156.
[60]
Garcia, M. A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D Appl. Phys. 2011, 44, 283001.
[61]
Castro, L.; Blázquez, M. L.; Muñoz, J. Á.; González, F. G.; Ballester, A. Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev. Adv. Sci. Eng. 2014, 3, 199-216.
[62]
Krajczewski, J.; Kołątaj, K.; Kudelski, A. Plasmonic nanoparticles in chemical analysis. RSC Adv. 2017, 7, 17559-17576.
[63]
Abdulhalim, I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics 2018, 7, 1891-1916.
[64]
Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797-4862.
[65]
Zhu, Z. H.; Zhu, T.; Liu, Z. F. Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 2004, 15, 357-364.
[66]
Esteban, R.; Borisov, A. G.; Nordlander, P.; Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 2012, 3, 825.
[67]
Lu, F.; Jin, M. Z.; Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 2014, 8, 307-312.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 January 2020
Revised: 25 February 2020
Accepted: 02 March 2020
Published: 14 April 2020
Issue date: April 2020

Copyright

© The Author(s) 2020

Acknowledgements

This work was supported by the National Science Centre Poland (No. 2016/21/D/ST4/02178 to N. P.). N. P. gratefully acknowledges the financial support of the French Government and the French Embassy in Poland. These researches were also supported by the Paris Ile-de-France Region-DIM Materiaux anciens et patrimoniaux. The measurements were partly performed using the equipment purchased in the frame of the project co-funded by the MałopolskaRegional Operational Program Measure 5.1 Krakow Metropolitan Areaas an important hub of the European Research Area for 2007-2013, project no. MRPO.05.01.00-12-013/15e.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

Return