Journal Home > Volume 13 , Issue 4

As a carbon-neutral alternative to the Haber-Bosch process, electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction. Here, we report that conductive metal-organic framework Co3(hexahydroxytriphenylene)2 (Co3HHTP2) nanoparticles act as an efficient catalyst for ambient electrochemical N2-to-NH3 fixation. When tested in 0.5 M LiClO4, such Co3HHTP2 achieves a large NH3 yield of 22.14 μg·h-1·mg-1cat. with a faradaic efficiency of 3.34% at -0.40 V versus the reversible hydrogen electrode. This catalyst also shows high electrochemical stability and excellent selectivity toward NH3 synthesis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3

Show Author's information Wei Xiong1Xin Cheng1Ting Wang2Yongsong Luo2Jing Feng1Siyu Lu3Abdullah M. Asiri4Wei Li1( )Zhenju Jiang1( )Xuping Sun2( )
School of Science, Xihua University, Chengdu 610039, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

As a carbon-neutral alternative to the Haber-Bosch process, electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction. Here, we report that conductive metal-organic framework Co3(hexahydroxytriphenylene)2 (Co3HHTP2) nanoparticles act as an efficient catalyst for ambient electrochemical N2-to-NH3 fixation. When tested in 0.5 M LiClO4, such Co3HHTP2 achieves a large NH3 yield of 22.14 μg·h-1·mg-1cat. with a faradaic efficiency of 3.34% at -0.40 V versus the reversible hydrogen electrode. This catalyst also shows high electrochemical stability and excellent selectivity toward NH3 synthesis.

Keywords: N2 reduction reaction, NH3 electrosynthesis, ambient conditions, conductive metal-organic framework Co3HHTP2 nanoparticles

References(60)

[1]
Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004-2008.
[2]
Lan, R.; Irvine, J. T. S.; Tao, S. W. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482-1494.
[3]
Aika, K. Ammonia: Catalysis and Manufacture; Springer: Berlin, 1995; pp199-308.
[4]
Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545-1556.
[5]
Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17-24.
[6]
Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
[7]
Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2-13.
[8]
Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658-5716.
[9]
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45-56.
[10]
Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.
[11]
Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 17, 1673-1674.
[12]
Xie, H. T.; Geng, Q.; Zhu, X. J.; Luo, Y. L.; Chang, L.; Niu, X. B.; Shi, X. F.; Asiri, A. M.; Gao, S. Y.; Wang, Z. M. et al. PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 24760-24764.
[13]
Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A 2019, 7, 21674-21677.
[14]
Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211-3217.
[15]
Zhao, R. B.; Liu, C. W.; Zhang, X. X.; Zhu, X. J.; Wei, P. P.; Ji, L.; Guo,Y. B.; Gao, S. Y.; Luo, Y. L.; Wang, Z. M. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst for NH3 synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 77-81.
[16]
Zhang, S. B.; Zhao, C. J.; Liu, Y. Y.; Li, W. Y.; Wang, J. L.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun. 2019, 55, 2952-2955.
[17]
Zhang, R.; Guo, H. R.; Yang, L.; Wang, Y.; Niu, Z. G.; Huang, H.; Chen, H. Y.; Xia, L.; Li, T. S.; Shi, X. F. et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions. ChemElectroChem 2019, 6, 1014-1018.
[18]
Zhao, J. X.; Ren, X.; Li, X. H.; Fan, D. W.; Sun, X.; Ma, H. M.; Wei, Q.; Wu, D. High-performance N2-to-NH3 fixation by a metal-free electrocatalyst. Nanoscale 2019, 11, 4231-4235.
[19]
Li, C. B.; Mou, S. Y.; Zhu, X. J.; Wang, F. Y.; Wang, Y. T.; Qiao, Y. X.; Shi, X. F.; Luo, Y. L; Zheng, B. Z.; Li, Q. et al. Dendritic Cu: A high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem. Commun. 2019, 55, 14474-14477.
[20]
Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.
[21]
Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by Fe doping. Angew. Chem., Int. Ed. 2019, 58, 18449-18453.
[22]
Liu, Y. Y.; Han, M. M.; Xiong, Q. Z.; Zhang, S. B.; Zhao, C. J.; Gong, W. B.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Ambient ammonia electrosynthesis: Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst. Adv. Energy Mater. 2019, 9, 1970042.
[23]
Li, Y. F.; Li, T. S.; Zhu, X. J.; Alshehri, A. A.; Alzahrani, K. A.; Lu, S. Y.; Sun, X. P. DyF3: An efficient electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem.—Asian J. 2020, 15, 487-489.
[24]
Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699-2703.
[25]
Yu, J. L.; Li, C. B.; Li, B. Y.; Zhu, X. J.; Zhang, R.; Ji, L.; Tang, D. P.; Asiri, A. M.; Sun, X. P.; Li, Q. et al. A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media. Chem. Commun. 2019, 55, 6401-6404.
[26]
Zhang, R.; Han, J. R.; Zheng, B. Z.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Metal-organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction at ambient conditions. Inorg. Chem. Front. 2019, 6, 391-395.
[27]
Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.
[28]
Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209-214.
[29]
Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902-2908.
[30]
Zhu, X. J.; Wu, T. W.; Ji, L.; Li, C. B.; Wang, T.; Wen, S. H.; Gao, S. Y.; Shi, X. F.; Luo, Y. L.; Peng, Q. L. et al. Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: The critical role of P in boosting the catalytic activity. J. Mater. Chem. A 2019, 7, 16117-16121.
[31]
Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387-13391.
[32]
Zhao, J. X.; Yang, J. J.; Ji, L.; Wang, H. B.; Chen, H. Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Cui, G. L.; Sun, X. P. Defect-rich fluorographene nanosheet for artificial N2 fixation under ambient conditions. Chem. Commun. 2019, 55, 4266-4269.
[33]
Fang, C. H.; Bi, T.; Xu, X. X.; Yu, N.; Cui, Z. Q.; Jiang, R. B.; Geng, B. Y. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction. Adv. Mater. Interfaces 2019, 6, 1901034.
[34]
Zhang, R.; Ji, L.; Kong, W. H.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Li, T. S.; Li, B. H.; Luo, Y. L.; Sun, X. P. Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chem. Commun. 2019, 55, 5263-5266.
[35]
Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.
[36]
Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771-9774.
[37]
Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun. 2019, 55, 3371-3374.
[38]
Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806-31815.
[39]
Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389-4394.
[40]
Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251.
[41]
Wang, F. Y.; Lv, X.; Zhu, X. J.; Du, J.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Zheng, B. Z.; Sun, X. P. Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2020, 56, 2107-2110.
[42]
James, S. L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276-288.
[43]
Kannangara, Y. Y.; Rathnayake, U. A.; Song, J. K. Hybrid supercapacitors based on metal organic frameworks using p-phenylenediamine building block. Chem. Eng. J. 2019, 361, 1235-1244.
[44]
Díaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 2012, 68, 126-128.
[45]
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[46]
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[47]
Zhao, X. R.; Yin, F. X.; Liu, N.; Li, G. R.; Fan, T. X.; Chen, B. H. Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 2017, 52, 10175-10185.
[48]
Hong, M.; Zhou, C.; Xu, S. S.; Ye, X. Z.; Yang, Z.; Zhang, L. Y.; Zhou, Z. H.; Hu, N. T.; Zhang, Y. F. Bi-metal organic framework nanosheets assembled on nickel wire films for volumetric-energy-dense supercapacitors. J. Power Source 2019, 423, 80-89.
[49]
Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220-224.
[50]
Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015, 54, 4349-4352.
[51]
Wu, H.; Zhang, W. L.; Kandambeth, S.; Shekhah, O.; Eddaoudi, M.; Alshareef, H. N. Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. Adv. Energy Mater. 2019, 9, 1900482.
[52]
Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836-841.
[53]
Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006-2008.
[54]
Li, Y. L.; Li, Q.; Zhao, S. H.; Chen, C.; Zhou, J. J.; Tao, K.; Han, L. Conductive 2D metal-organic frameworks decorated on layered double hydroxides nanoflower surface for high-performance supercapacitor. ChemistrySelect 2018, 3, 13596-13602.
[55]
Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511-3513.
[56]
Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118-121.
[57]
Chuang, T. J.; Brundle, C. R.; Rice, D. W. Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci. 1976, 59, 413-429.
[58]
Mendecki, L.; Mirica, K. A. Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl. Mater. Interfaces 2018, 10, 19248-19257.
[59]
Koo, W. T.; Kim, S. J.; Jang, J. S.; Kim, D.; Kim, I. D. Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors: Highly active and conductive porous materials. Adv. Sci. 2019, 6, 1900250.
[60]
Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
File
12274_2020_2733_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright

Publication history

Received: 05 February 2020
Revised: 26 February 2020
Accepted: 27 February 2020
Published: 11 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return