Journal Home > Volume 13 , Issue 4

Flexible strain sensors exhibit outstanding advantages in terms of sensitivity and stability by detecting changes in physical signals. It can be easily attached to human skin and clothed to achieve monitoring of human motion and health. However, general sensing material shows low stretchability and cannot respond to signals under large deformation. In this work, a highly stretchable polymer composite was developed by adding small amount (0.17 wt.%) of silver nanowires (AgNWs) in stretchable conductive polymer materials. The conductivity of polymer/AgNWs composite is 1.3 S/m with the stretchability up to 500%. The stretchable strain sensor based on the polymer/AgNWs composite can respond to strain signals in real time, even for 1% strain response, and shows excellent stability over 1,000 loading/unloading cycles. Moreover, the strain sensor can be attached to human skin and clothed to monitor joints, throat and pulse of the human body. The human body electrocardiogram (ECG) signal was detected successfully with the polymer/AgNWs electrode, which is comparable to the signal obtained by the commercial electrode. Overall, the sensors enable monitoring of human movement and health. These advantages make it a potential application in wearable devices and electronic skin.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly stretchable polymer/silver nanowires composite sensor for human health monitoring

Show Author's information Yanjing ZhangPei He( )Meng LuoXiaowen XuGuozhang DaiJunliang Yang( )
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China

Abstract

Flexible strain sensors exhibit outstanding advantages in terms of sensitivity and stability by detecting changes in physical signals. It can be easily attached to human skin and clothed to achieve monitoring of human motion and health. However, general sensing material shows low stretchability and cannot respond to signals under large deformation. In this work, a highly stretchable polymer composite was developed by adding small amount (0.17 wt.%) of silver nanowires (AgNWs) in stretchable conductive polymer materials. The conductivity of polymer/AgNWs composite is 1.3 S/m with the stretchability up to 500%. The stretchable strain sensor based on the polymer/AgNWs composite can respond to strain signals in real time, even for 1% strain response, and shows excellent stability over 1,000 loading/unloading cycles. Moreover, the strain sensor can be attached to human skin and clothed to monitor joints, throat and pulse of the human body. The human body electrocardiogram (ECG) signal was detected successfully with the polymer/AgNWs electrode, which is comparable to the signal obtained by the commercial electrode. Overall, the sensors enable monitoring of human movement and health. These advantages make it a potential application in wearable devices and electronic skin.

Keywords: health monitoring, silver nanowires, stretchable sensor, electrocardiogram

References(58)

[1]
Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.
[2]
Ma, R. J.; Chou, S. Y.; Xie, Y.; Pei, Q. B. Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev. 2019, 48, 1741-1786.
[3]
Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465-1491.
[4]
Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924.
[5]
Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.
[6]
Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614-9635.
[7]
Peng, Y. Y.; Xiao, S. G.; Yang, J. L.; Lin, J.; Yuan, W.; Gu, W. B.; Wu, X. Z.; Cui, Z. The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Appl. Phys. Lett. 2017, 110, 261904.
[8]
Li, H. Y.; Guo, H.; Tong, S. C.; Huang, K. Q.; Zhang, C. J.; Wang, X. F.; Zhang, D.; Chen, X. H.; Yang, J. L. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. J. Phys. D: Appl. Phys. 2019, 52, 115501.
[9]
Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345-2352.
[10]
Wang, T.; Zhang, Y.; Liu, Q. C.; Cheng, W.; Wang, X. R.; Pan, L. J.; Xu, B. X.; Xu, H. X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. 2018, 28, 1705551.
[11]
Lee, J.; Pyo, S.; Kwon, D. S.; Jo, E.; Kim, W.; Kim, J. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 2019, 15, 1805120.
[12]
Huang, G. W.; Xiao, H. M.; Fu, S. Y. Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci. Rep. 2015, 5, 13971.
[13]
Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y. X.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.
[14]
Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154-5163.
[15]
Lan, L. Y.; Yin, T. H.; Jiang, C. M.; Li, X. J.; Yao, Y.; Wang, Z.; Qu, S. X.; Ye, Z. Z.; Ping, J. F.; Ying, Y. B. Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2019, 62, 319-328.
[16]
Duan, S. S.; Wang, Z. H.; Zhang, L.; Liu, J.; Li, C. Z. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 2018, 3, 1800020.
[17]
Kim, K. H.; Jang, N. S.; Ha, S. H.; Cho, J. H.; Kim, J. M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 2018, 14, 1704232.
[18]
Hou, C. Y.; Huang, T.; Wang, H. Z.; Yu, H.; Zhang, Q. H.; Li, Y. G. A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Sci. Rep. 2013, 3, 3138.
[19]
Wang, X. X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z. Y.; Ramakrishna, S.; Long, Y. Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 2018, 12, 8588-8596.
[20]
Parida, K.; Kumar, V.; Wang, J. X.; Bhavanasi, V.; Bendi, R.; Lee, P. S. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 2017, 29, 1702181.
[21]
Huang, J. Y.; Li, D. W.; Zhao, M.; Mensah, A.; Lv, P. F.; Tian, X. J.; Huang, F. L.; Ke, H. Z.; Wei, Q. F. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Elect. Mater. 2019, 5, 1900241.
[22]
Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678-1698.
[23]
Ho, M. D.; Ling, Y. Z.; Yap, L. W.; Wang, Y.; Dong, D. S.; Zhao, Y. M.; Cheng, W. L. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 2017, 27, 1700845.
[24]
Yang, K.; Yin, F. X.; Xia, D.; Peng, H. F.; Yang, J. Z.; Yuan, W. J. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019, 11, 9949-9957.
[25]
Zhao, S. F.; Li, J. H.; Cao, D. X.; Zhang, G. P.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y. F.; Sun, R. et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features. ACS Appl. Mater. Interfaces 2017, 9, 12147-12164.
[26]
Kim, S. J.; Mondal, S.; Min, B. K.; Choi, C. G. Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/ graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377-36384.
[27]
Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790-8795.
[28]
Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346-2354.
[29]
Shi, J. D.; Li, X. M.; Cheng, H. Y.; Liu, Z. J.; Zhao, L. Y.; Yang, T. T.; Dai, Z. H.; Cheng, Z. G.; Shi, E. Z.; Yang, L. et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 2016, 26, 2078-2084.
[30]
Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.
[31]
Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56-62.
[32]
Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649-659.
[33]
Gao, Y.; Fang, X. L.; Tan, J. P.; Lu, T.; Pan, L. K.; Xuan, F. Z. Highly sensitive strain sensors based on fragmentized carbon nanotube/ polydimethylsiloxane composites. Nanotechnology 2018, 29, 235501.
[34]
Zheng, Y. J.; Li, Y. L.; Dai, K.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 2018, 156, 276-286.
[35]
Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117-5122.
[36]
Yin, F. Q.; Lu, H. J.; Pan, H.; Ji, H. J.; Pei, S.; Liu, H.; Huang, J. Y.; Gu, J. H.; Li, M. Y.; Wei, J. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep. 2019, 9, 2403.
[37]
Hu, W. L.; Niu, X. F.; Zhao, R.; Pei, Q. B. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013, 102, 083303.
[38]
Yang, Y.; Ding, S.; Araki, T.; Jiu, J. T.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401-414.
[39]
Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986-5996.
[40]
Zhu, S. E.; Ghatkesar, M. K.; Zhang, C.; Janssen, G. C. A. M. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 2013, 102, 161904.
[41]
Zheng, Q. B.; Liu, X.; Xu, H. R.; Cheung, M. S.; Choi, Y. W.; Huang, H. C.; Lei, H. Y.; Shen, X.; Wang, Z. Y.; Wu, Y. et al. Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horiz. 2018, 3, 35-44.
[42]
Liu, X.; Liu, D.; Lee, J. H.; Zheng, Q. B.; Du, X. H.; Zhang, X. Y.; Xu, H. R.; Wang, Z. Y.; Wu, Y.; Shen, X. et al. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 2282-2294.
[43]
Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.
[44]
Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814-2821.
[45]
Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 2018, 12, 6147-6155.
[46]
Li, H. Y.; Guo, H.; Huang, K. Q.; Liu, B.; Zhang, C. J.; Chen, X. H.; Xu, X. W.; Yang, J. L. Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor. Appl. Phys. A 2018, 124, 763.
[47]
Xu, X. W.; Liu, Z. F.; He, P.; Yang, J. L. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D: Appl. Phys. 2019, 52, 455401.
[48]
Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.
[49]
Shi, L.; Zhu, T. X.; Gao, G. X.; Zhang, X. Y.; Wei, W.; Liu, W. F.; Ding, S. J. Highly stretchable and transparent ionic conducting elastomers. Nat. Commun. 2018, 9, 2630.
[50]
Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220.
[51]
Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114-3121.
[52]
Hu, W. L.; Niu, X. F.; Li, L.; Yun, S.; Yu, Z. B.; Pei, Q. B. Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012, 23, 344002.
[53]
Chen, S.; Wei, Y.; Yuan, X.; Lin, Y.; Liu, L. A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. J. Mater. Chem. C 2016, 4, 4304-4311.
[54]
Lu, L. J.; Wei, X. D.; Zhang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C 2017, 5, 7035-7042.
[55]
Lee, C. J.; Park, K. H.; Han, C. J.; Oh, M. S.; You, B.; Kim, Y. S.; Kim, J. W. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Sci. Rep. 2017, 7, 7959.
[56]
Song, Y. X.; Xu, W. M.; Rong, M. Z.; Zhang, M. Q. A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film. J. Mater. Chem. A 2019, 7, 2315-2325.
[57]
Zhu, Y.; Qin, Q. Q.; Xu, F.; Fan, F. R.; Ding, Y.; Zhang, T.; Wiley, B. J.; Wang, Z. L. Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B 2012, 85, 045443.
[58]
Myers, A. C.; Huang, H.; Zhu, Y. Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 2015, 5, 11627-11632.
File
12274_2020_2730_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 December 2019
Revised: 21 February 2020
Accepted: 23 February 2020
Published: 14 March 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51673214 and 61804185), the National Key Research and Development Program of China (No. 2017YFA0206600), the Natural Science Foundation of Hunan Province (No. 2019JJ50804), and the Free Exploration and Innovation Project of Central South University (No. 2019zzts427).

Return