Journal Home > Volume 13 , Issue 4

To construct the heterojunctions of TiO2 with other compounds is of great importance for overcoming its inherent shortages and improving the visible-light photocatalytic performance. Here we propose the construction of TiO2/covalent organic framework (COF) heterojunction with tight connection by a supercritical CO2 (SC CO2) method, which helps bridging the transformation paths for photo-induced charge between TiO2 and COF. The produced TiO2/COF heterojunction performs a H2 evolution of 3,962 μmol·g-1·h-1 under visible-light irradiation, which is ~ 25 times higher than that of pure TiO2 and 4.5 folds higher than that of TiO2/COF synthesized by the conventional solvothermal method. This study opens up new possibilities for constructing heterojunctions for solar energy utilization.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution

Show Author's information Lifei Liu1,2Jianling Zhang1,2,3( )Xiuniang Tan1,2Bingxing Zhang1,2Jinbiao Shi1,2Xiuyan Cheng1,2Dongxing Tan1,2Buxing Han1,2,3Lirong Zheng4Fanyu Zhang1,2
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

To construct the heterojunctions of TiO2 with other compounds is of great importance for overcoming its inherent shortages and improving the visible-light photocatalytic performance. Here we propose the construction of TiO2/covalent organic framework (COF) heterojunction with tight connection by a supercritical CO2 (SC CO2) method, which helps bridging the transformation paths for photo-induced charge between TiO2 and COF. The produced TiO2/COF heterojunction performs a H2 evolution of 3,962 μmol·g-1·h-1 under visible-light irradiation, which is ~ 25 times higher than that of pure TiO2 and 4.5 folds higher than that of TiO2/COF synthesized by the conventional solvothermal method. This study opens up new possibilities for constructing heterojunctions for solar energy utilization.

Keywords: TiO2, visible light, supercritical CO2, covalent organic framework (COF), H2 production

References(42)

[1]
Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582.
[2]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[3]
Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16-42.
[4]
Low, J.; Cheng, B.; Yu, J. G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658-686.
[5]
Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 25, 1-29.
[6]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga. Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.
[7]
Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 2007, 11, 401-425.
[8]
Zhang, Z. G.; Huang, Z. F.; Cheng, X. D.; Wang, Q. L.; Chen, Y.; Dong, P. M.; Zhang, X. W. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Appl. Surf. Sci. 2015, 355, 45-51.
[9]
Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal. A: Gen. 2011, 400, 195-202.
[10]
Tian, H.; Zhang, X. L.; Scott, J.; Ng, C.; Amal, R. TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. J. Mater. Chem. A 2014, 2, 6432-6438.
[11]
Wang, E. J.; Yang, W. S.; Cao, Y. A. Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity. J. Phys. Chem. C 2009, 113, 20912-20917.
[12]
Feng, X. J.; Sloppy, J. D.; LaTempa, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem. 2011, 21, 13429-13433.
[13]
Hou, W. B.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929-936.
[14]
Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883-16890.
[15]
Yan, H. J.; Yang, H. X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 2011, 509, L26-L29.
[16]
Chen, Y. F.; Huang, W. X.; He, D. L.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405-14414.
[17]
Zheng, L. X.; Han, S. C.; Liu, H.; Yu, P. P.; Fang, X. S. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 2016, 12, 1527-1536.
[18]
Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Improved photocatalytic performance of heterojunction by controlling the contact facet: High electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater. 2015, 25, 3074-3080.
[19]
Hao, R. R.; Wang, G. H.; Tang, H.; Sun, L. L.; Xu, C.; Han, D. Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 2016, 187, 47-58.
[20]
Hou, H. J.; Zhang, X. H.; Huang, D. K.; Ding, X.; Wang, S. Y.; Yang, X. L.; Li, S. Q.; Xiang, Y. G.; Chen, H. Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Appl. Catal. B: Environ. 2017, 203, 563-571.
[21]
Luo, Q.; Ma, H.; Zhang, Y.; Yin, X. W.; Yao, Z. B.; Wang, N.; Li, J. B.; Fan, S. S.; Jiang, K. L.; Lin, H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J. Mater. Chem. A 2016, 4, 5569-5577.
[22]
Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 2009, 47, 3280-3287.
[23]
DeSimone, J. M.; Guan, Z.; Elsbernd, C. S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science 1992, 257, 945-947.
[24]
Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. Porous inverse vulcanised polymers for mercury capture. Chem. Commun. 2016, 52, 5383-5386.
[25]
Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106-12110.
[26]
Üzer, S.; Akman, U.; Hortacsu, Ö. Polymer swelling and impregnation using supercritical CO2: A model-component study towards producing controlled-release drugs. J. Supercrit. Fluids 2006, 38, 119-128.
[27]
Zhang, W.; He, H. L.; Tian, Y.; Lan, K.; Liu, Q.; Wang, C. Y.; Liu, Y.; Elzatahry, A.; Che, R. C.; Li, W. et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting. Chem. Sci. 2019, 10, 1664-1670.
[28]
Gao, C. H.; Lin, G.; Lei, Z. X.; Zheng, Q.; Lin, J. S.; Lin, Z. A. Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins. J. Mater. Chem. B 2017, 5, 7496-7503.
[29]
Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017, 139, 12911-12914.
[30]
Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Highly visible light active TiO2-xNx heterojunction photocatalysts. Chem. Mater. 2010, 22, 3843-3853.
[31]
Patrahau, B.; Chaumont, C.; Barloy, L.; Hellwig, P.; Henry, M.; Melin, F.; Pauly, M.; Mobian, P. From a bulk solid to thin films of a hybrid material derived from the [Ti10O12(cat)8(py)8] oxo-cluster and poly(4-vinylpyridine). New J. Chem. 2019, 43, 1581-1588.
[32]
Mu, X. W.; Zhan, J.; Feng, X. M.; Yuan, B. H.; Qiu, S. L.; Song, L.; Hu, Y. Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: Enhancement flame retardant and mechanical performances of thermoplastic polyurethanes. ACS Appl. Mater. Interfaces 2017, 9, 23017-23026.
[33]
Bolis, V.; Bordiga, S.; Lamberti, C.; Zecchina, A.; Carati, A.; Rivetti, F.; Spanò, G.; Petrini, G. A calorimetric, IR, XANES and EXAFS study of the adsorption of NH3 on Ti-silicalite as a function of the sample pre-treatment. Microporous Mesoporous Mater. 1999, 30, 67-76.
[34]
Farges, F. A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses. J. Non-Cryst. Solids 1999, 244, 25-33.
[35]
Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 1997, 10, 1-37.
[36]
Zu, G. Q.; Shen, J.; Zou, L. P.; Wang, F.; Wang, X. D.; Zhang, Y. W.; Yao, X. D. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 2016, 99, 203-211.
[37]
Liu, H.; Huang, B. L.; Zhou, J. H.; Wang, K.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J. Mater. Chem. A 2018, 6, 1979-1984.
[38]
Gao, M. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Xu, S. C.; Feng, M.; Li, H. B. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale 2019, 11, 3506-3513.
[39]
Gholipour, M. R.; Dinh, C. T.; Béland, F.; Do, T. O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187-8208.
[40]
Guo, X.; Li, M. G.; Liu, Y. Q.; Huang, Y. R.; Geng, S.; Yang, W. W.; Yu, Y. S. Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 563, 405-413.
[41]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
[42]
Liu, H.; Liu, X. Y.; Yang, W. W.; Shen, M. Q.; Geng, S.; Yu, C.; Shen, B.; Yu, Y. S. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott-Schottky heterojunction. J. Mater. Chem. A 2019, 7, 2022-2026.
File
12274_2020_2728_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2019
Revised: 09 February 2020
Accepted: 21 February 2020
Published: 14 March 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors thank the financial supports from Ministry of Science and Technology of China (No. 2017YFA0403003), the National Natural Science Foundation of China (Nos. 21525316 and 21673254), Chinese Academy of Sciences (No. QYZDY-SSW-SLH013), and Beijing Municipal Science & Technology Commission (No. Z191100007219009).

Return