[1]
Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582.
[2]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[3]
Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16-42.
[4]
Low, J.; Cheng, B.; Yu, J. G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658-686.
[5]
Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 25, 1-29.
[6]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga. Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.
[7]
Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 2007, 11, 401-425.
[8]
Zhang, Z. G.; Huang, Z. F.; Cheng, X. D.; Wang, Q. L.; Chen, Y.; Dong, P. M.; Zhang, X. W. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Appl. Surf. Sci. 2015, 355, 45-51.
[9]
Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal. A: Gen. 2011, 400, 195-202.
[10]
Tian, H.; Zhang, X. L.; Scott, J.; Ng, C.; Amal, R. TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. J. Mater. Chem. A 2014, 2, 6432-6438.
[11]
Wang, E. J.; Yang, W. S.; Cao, Y. A. Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity. J. Phys. Chem. C 2009, 113, 20912-20917.
[12]
Feng, X. J.; Sloppy, J. D.; LaTempa, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem. 2011, 21, 13429-13433.
[13]
Hou, W. B.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929-936.
[14]
Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883-16890.
[15]
Yan, H. J.; Yang, H. X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 2011, 509, L26-L29.
[16]
Chen, Y. F.; Huang, W. X.; He, D. L.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405-14414.
[17]
Zheng, L. X.; Han, S. C.; Liu, H.; Yu, P. P.; Fang, X. S. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 2016, 12, 1527-1536.
[18]
Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Improved photocatalytic performance of heterojunction by controlling the contact facet: High electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater. 2015, 25, 3074-3080.
[19]
Hao, R. R.; Wang, G. H.; Tang, H.; Sun, L. L.; Xu, C.; Han, D. Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ. 2016, 187, 47-58.
[20]
Hou, H. J.; Zhang, X. H.; Huang, D. K.; Ding, X.; Wang, S. Y.; Yang, X. L.; Li, S. Q.; Xiang, Y. G.; Chen, H. Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Appl. Catal. B: Environ. 2017, 203, 563-571.
[21]
Luo, Q.; Ma, H.; Zhang, Y.; Yin, X. W.; Yao, Z. B.; Wang, N.; Li, J. B.; Fan, S. S.; Jiang, K. L.; Lin, H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J. Mater. Chem. A 2016, 4, 5569-5577.
[22]
Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 2009, 47, 3280-3287.
[23]
DeSimone, J. M.; Guan, Z.; Elsbernd, C. S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science 1992, 257, 945-947.
[24]
Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. Porous inverse vulcanised polymers for mercury capture. Chem. Commun. 2016, 52, 5383-5386.
[25]
Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106-12110.
[26]
Üzer, S.; Akman, U.; Hortacsu, Ö. Polymer swelling and impregnation using supercritical CO2: A model-component study towards producing controlled-release drugs. J. Supercrit. Fluids 2006, 38, 119-128.
[27]
Zhang, W.; He, H. L.; Tian, Y.; Lan, K.; Liu, Q.; Wang, C. Y.; Liu, Y.; Elzatahry, A.; Che, R. C.; Li, W. et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting. Chem. Sci. 2019, 10, 1664-1670.
[28]
Gao, C. H.; Lin, G.; Lei, Z. X.; Zheng, Q.; Lin, J. S.; Lin, Z. A. Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins. J. Mater. Chem. B 2017, 5, 7496-7503.
[29]
Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017, 139, 12911-12914.
[30]
Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Highly visible light active TiO2-xNx heterojunction photocatalysts. Chem. Mater. 2010, 22, 3843-3853.
[31]
Patrahau, B.; Chaumont, C.; Barloy, L.; Hellwig, P.; Henry, M.; Melin, F.; Pauly, M.; Mobian, P. From a bulk solid to thin films of a hybrid material derived from the [Ti10O12(cat)8(py)8] oxo-cluster and poly(4-vinylpyridine). New J. Chem. 2019, 43, 1581-1588.
[32]
Mu, X. W.; Zhan, J.; Feng, X. M.; Yuan, B. H.; Qiu, S. L.; Song, L.; Hu, Y. Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: Enhancement flame retardant and mechanical performances of thermoplastic polyurethanes. ACS Appl. Mater. Interfaces 2017, 9, 23017-23026.
[33]
Bolis, V.; Bordiga, S.; Lamberti, C.; Zecchina, A.; Carati, A.; Rivetti, F.; Spanò, G.; Petrini, G. A calorimetric, IR, XANES and EXAFS study of the adsorption of NH3 on Ti-silicalite as a function of the sample pre-treatment. Microporous Mesoporous Mater. 1999, 30, 67-76.
[34]
Farges, F. A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses. J. Non-Cryst. Solids 1999, 244, 25-33.
[35]
Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 1997, 10, 1-37.
[36]
Zu, G. Q.; Shen, J.; Zou, L. P.; Wang, F.; Wang, X. D.; Zhang, Y. W.; Yao, X. D. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 2016, 99, 203-211.
[37]
Liu, H.; Huang, B. L.; Zhou, J. H.; Wang, K.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J. Mater. Chem. A 2018, 6, 1979-1984.
[38]
Gao, M. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Xu, S. C.; Feng, M.; Li, H. B. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale 2019, 11, 3506-3513.
[39]
Gholipour, M. R.; Dinh, C. T.; Béland, F.; Do, T. O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187-8208.
[40]
Guo, X.; Li, M. G.; Liu, Y. Q.; Huang, Y. R.; Geng, S.; Yang, W. W.; Yu, Y. S. Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 563, 405-413.
[41]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
[42]
Liu, H.; Liu, X. Y.; Yang, W. W.; Shen, M. Q.; Geng, S.; Yu, C.; Shen, B.; Yu, Y. S. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott-Schottky heterojunction. J. Mater. Chem. A 2019, 7, 2022-2026.