Journal Home > Volume 13 , Issue 4

Searching for inexpensive, efficient and durable electrocatalysts with earth-abundant elements toward the hydrogen evolution reaction (HER) is of vital importance for the future sustainable hydrogen economy, yet still remains a formidable challenge. Herein, a facile template-engaged strategy is demonstrated for the direct in-situ growth of Ni nanoparticles and N-doped carbon nanotubes on carbon nanorod substrates, forming a hierarchically branched architecture (abbreviated as Ni@N-C NT/NRs hereafter). The elaborate construction of such unique hierarchical structure with tightly encapsulated Ni nanoparticles and open configuration endows the as-fabricated Ni@N-C NT/NRs with abundant well-dispersed active sites, enlarged surface area, reduced resistances of charge transfer and mass diffusion, and reinforced mechanical robustness. As a consequence, the optimal Ni@N-C NT/NR catalyst demonstrates superior electrocatalytic activity with relatively low overpotential of 134 mV to deliver a current density of 10 mA·cm-2 and excellent stability for HER in 0.1 M KOH, holding a great promise for practical scalable H2 production. More importantly, this work offers a reliable methodology for feasible fabrication of robust high-performance carbon-based hierarchical architectures for a variety of electrochemical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis

Show Author's information Xiaoxiao Yan1,2Minyi Gu2Yao Wang2Lin Xu2( )Yawen Tang2Renbing Wu1( )
Department of Materials Science, Fudan University, Shanghai 200433, China
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

Abstract

Searching for inexpensive, efficient and durable electrocatalysts with earth-abundant elements toward the hydrogen evolution reaction (HER) is of vital importance for the future sustainable hydrogen economy, yet still remains a formidable challenge. Herein, a facile template-engaged strategy is demonstrated for the direct in-situ growth of Ni nanoparticles and N-doped carbon nanotubes on carbon nanorod substrates, forming a hierarchically branched architecture (abbreviated as Ni@N-C NT/NRs hereafter). The elaborate construction of such unique hierarchical structure with tightly encapsulated Ni nanoparticles and open configuration endows the as-fabricated Ni@N-C NT/NRs with abundant well-dispersed active sites, enlarged surface area, reduced resistances of charge transfer and mass diffusion, and reinforced mechanical robustness. As a consequence, the optimal Ni@N-C NT/NR catalyst demonstrates superior electrocatalytic activity with relatively low overpotential of 134 mV to deliver a current density of 10 mA·cm-2 and excellent stability for HER in 0.1 M KOH, holding a great promise for practical scalable H2 production. More importantly, this work offers a reliable methodology for feasible fabrication of robust high-performance carbon-based hierarchical architectures for a variety of electrochemical applications.

Keywords: hydrogen evolution reaction, Ni nanoparticles, nitrogen-doped carbon nanotubes, carbon nanorods, hierarchically branched structure

References(52)

[1]
Zheng, L. J.; Zheng, S. Z.; Wei, H. R.; Du, L. L.; Zhu, Z. Y.; Chen, J.; Yang, D. C. Palladium/bismuth/copper hierarchical nano-architectures for efficient hydrogen evolution and stable hydrogen detection. ACS Appl. Mater. Interfaces 2019, 11, 6248-6256.
[2]
Jia, N.; Liu, Y. P.; Wang, L.; Chen, P.; Chen, X. B.; An, Z. W.; Chen, Y. 0.2 V electrolysis voltage-driven alkaline hydrogen production with nitrogen-doped carbon nanobowl-supported ultrafine Rh nanoparticles of 1.4 nm. ACS Appl. Mater. Interfaces 2019, 11, 35039-35049.
[3]
Deng, S. J.; Zhang, K. L.; Xie, D.; Zhang, Y.; Zhang, Y. Q.; Wang, Y. D.; Wu, J. B.; Wang, X. L.; Fan, H. J.; Xia, X. H. et al. High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 2019, 11, 12.
[4]
Hao, S.; Yang, L. B.; Liu, D. N.; Kong, R. M.; Du, G.; Asiri, A. M.; Yang, Y. C.; Sun, X. P. Integrating natural biomass electro-oxidation and hydrogen evolution: Using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chem. Commun. 2017, 53, 5710-5713.
[5]
Li, T. F.; Luo, G.; Liu, K. H.; Li, X.; Sun, D. M.; Xu, L.; Li, Y. F.; Tang, Y. W. Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv. Funct. Mater. 2018, 28, 1805828.
[6]
Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
[7]
Zhang, Y.; Liu, Y. W.; Ma, M.; Ren, X.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chem. Commun. 2017, 53, 11048-11051.
[8]
Liu, M.; Zhang, R.; Zhang, L. X.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R. M.; Sun, X. P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front. 2017, 4, 420-423.
[9]
Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.
[10]
Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802011.
[11]
Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599-2609.
[12]
Ren, X.; Wang, W. Y.; Ge, R. X.; Hao, S.; Qu, F. L.; Du, G.; Asiri, A. M.; Wei, Q.; Chen, L.; Sun, X. P. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem. Commun. 2017, 53, 9000-9003.
[13]
Ouyang, T.; Chen, A. N.; He, Z. Z.; Liu, Z. Q.; Tong, Y. X. Rational design of atomically dispersed nickel active sites in β-Mo2C for the hydrogen evolution reaction at all pH values. Chem. Commun. 2018, 54, 9901-9904.
[14]
Zhang, X.; Zhang, Y. Y.; Zhang, Y.; Jiang, W. J.; Zhang, Q. H.; Yang, Y. G.; Gu, L.; Hu, J. S.; Wan, L. J. Phase-controlled synthesis of 1T-MoSe2/NiSe heterostructure nanowire arrays via electronic injection for synergistically enhanced hydrogen evolution. Small Methods 2019, 3, 1800317.
[15]
Ha, Y.; Shi, L. X.; Chen, Z. L.; Wu, R. B. Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 2019, 6, 1900272.
[16]
Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 2019, 9, 1803918.
[17]
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
[18]
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196-7225.
[19]
Zhang, Y. Q.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater. 2016, 6, 1600221.
[20]
Yu, Z. Y.; Duan, Y.; Gao, M. R.; Lang, C. C.; Zheng, Y. R.; Yu, S. H. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 2017, 8, 968-973.
[21]
Wang, H.; Cao, Y. J.; Zou, G. F.; Yi, Q. H.; Guo, J.; Gao, L. J. High-performance hydrogen evolution electrocatalyst derived from Ni3C nanoparticles embedded in a porous carbon network. ACS Appl. Mater. Interfaces 2017, 9, 60-64.
[22]
Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684-694.
[23]
Xi, W.; Ren, Z. Y.; Kong, L. J.; Wu, J.; Du, S. C.; Zhu, J. Q.; Xue, Y. Z.; Meng, H. Y.; Fu, H. G. Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2016, 4, 7297-7304.
[24]
Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415-425.
[25]
Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923-4928.
[26]
Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942-14962.
[27]
Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290-5296.
[28]
Jin, H. Y.; Liu, X.; Chen, S. M.; Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 805-810.
[29]
Zhao, L.; Wang, Q. C.; Zhang, X. Q.; Deng, C.; Li, Z. H.; Lei, Y. P.; Zhu, M. F. Combined electron and structure manipulation on Fe-containing N-doped carbon nanotubes to boost bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 2018, 10, 35888-35895.
[30]
Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.
[31]
Huang, C.; Zou, Y.; Ye, Y. Q.; Ouyang, T.; Xiao, K.; Liu, Z. Q. Unveiling the active sites of Ni-Fe phosphide/metaphosphate for efficient oxygen evolution under alkaline conditions. Chem. Commun. 2019, 55, 7687-7690.
[32]
Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291-13296.
[33]
Su, H.; Wang, X. T.; Hu, J. X.; Ouyang, T.; Xiao, K.; Liu, Z. Q. Co-Mn spinel supported self-catalysis induced N-doped carbon nanotubes with high efficiency electron transport channels for zinc-air batteries. J. Mater. Chem. A 2019, 7, 22307-22313.
[34]
Zhou, Z. X.; He, F.; Shen, Y. F.; Chen, X. H.; Yang, Y. R.; Liu, S. Q.; Mori, T.; Zhang, Y. J. Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chem. Commun. 2017, 53, 2044-2047.
[35]
Huang, Y.; Song, X. N.; Deng, J.; Zha, C. Y.; Huang, W. J.; Wu, Y. L.; Li, Y. G. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl. Catal. B: Environ. 2019, 245, 656-661.
[36]
Fu, H. Q.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Liu, P. F.; Yang, H. G. 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation. ACS Energy Lett. 2018, 3, 2021-2029.
[37]
Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357-2366.
[38]
Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342-2348.
[39]
Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585-7592.
[40]
Chen, P. Z.; Zhou, T. P.; Chen, M. L.; Tong, Y.; Zhang, N.; Peng, X.; Chu, W. S.; Wu, X. J.; Wu, C. Z.; Xie, Y. Enhanced catalytic activity in nitrogen-anion modified metallic cobalt disulfide porous nanowire arrays for hydrogen evolution. ACS Catal. 2017, 7, 7405-7411.
[41]
Hou, J. G.; Sun, Y. Q.; Li, Z. W.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2018, 28, 1803278.
[42]
Pang, H.; Lu, Q. Y.; Li, Y. C.; Gao, F. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem. Commun. 2009, 7542-7544.
[43]
Shen, Y.; Lua, A. C.; Xi, J. Y.; Qiu, X. P. Ternary platinum-copper-nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes. ACS Appl. Mater. Interfaces 2016, 8, 3464-3472.
[44]
Sun, H.; Min, Y. X.; Yang, W. J.; Lian, Y. B.; Lin, L.; Feng, K.; Deng, Z.; Chen, M. Z.; Zhong, J.; Xu, L. et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal. 2019, 9, 8882-8892.
[45]
Wang, P.; Xiao, P. Y.; Zhong, S. X.; Chen, J. R.; Lin, H. J.; Wu, X. L. Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. J. Mater. Chem. A 2016, 4, 15450-15456.
[46]
Tessonnier, J. P.; Su, D. S. Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem 2011, 4, 824-847.
[47]
Hossain, M. D.; Liu, Z. J.; Zhuang, M. H.; Yan, X. X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 2019, 9, 1803689.
[48]
Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212-8221.
[49]
Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.
[50]
Wang, X.; Li, Z.; Wu, D. Y.; Shen, G. R.; Zou, C. Q.; Feng, Y.; Liu, H.; Dong, C. K.; Du, X. W. Porous cobalt-nickel hydroxide nanosheets with active cobalt ions for overall water splitting. Small 2019, 15, 1804832.
[51]
Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070-15073.
[52]
Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337-11343.
File
12274_2020_2727_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 November 2019
Revised: 12 February 2020
Accepted: 21 February 2020
Published: 14 March 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 21972068, 21875112, 21576139, 51871060, and 51672049), Natural Science Foundation of Jiangsu Province (No. BK20171473). The authors also thank the supports from National and Local Joint Engineering Research Center of Biomedical Functional Materials and a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Return