AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

N-doped interconnected carbon aerogels as an efficient SeS2 host for long life Na-SeS2 batteries

Yurui Deng1Lunlun Gong1( )Hoda Ahmed2Yuelei Pan1,2Xudong Cheng1Siyu Zhu1Heping Zhang1( )
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Show Author Information

Graphical Abstract

Abstract

Selenium sulfide (SeS2) cathodes have attracted much concern as an optimized choice comparing to sulfur and selenium for lithium and sodium storage. However, it also suffers from poor cycling stability due to the dissolution of reaction intermediate products. In this study, N-doped Interconnected carbon aerogels was applied as an efficient SeS2 host by infiltrating selenium sulfide into its microporous structure (denoted as SeS2@NCAs), which could effectively accommodate the volume change of SeS2 during cycling and alleviate the dissolution of reaction intermediate products. Therefore, as for Na storage, the SeS2@NCAs cathode delivers a superior long-term cycling performance of 536 mA·h·g-1 at a current density of 0.5 A·g-1 after 1,000 cycles with only 0.04% capacity decline per cycle and a high rate performance (524 mA·h·g-1 at 2 A·g-1 and 745 mA·h·g-1 at 0.1 A·g-1 retained), indicating the remarkable cycling stability of SeS2@NCAs cathodes.

Electronic Supplementary Material

Download File(s)
12274_2020_2726_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821-9826.
[2]
Zhang, Z. W.; Li, Z. Q.; Hao, F. B.; Wang, X. K.; Li, Q.; Qi, Y. X.; Fan, R. H.; Yin, L. W. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv. Funct. Mater. 2014, 24, 2500-2509.
[3]
Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462-4467.
[4]
Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-1250.
[5]
Hwang, T. H.; Jung, D. S.; Kim, J. S.; Kim, B. G.; Choi, J. W. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett. 2013, 13, 4532-4538.
[6]
Lu, X. C.; Kirby, B. W.; Xu, W.; Li, G. S.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. Advanced intermediate-temperature Na-S battery. Energy Environ. Sci. 2013, 6, 299-306.
[7]
Xu, X. F.; Zhou, D.; Qin, X. Y.; Lin, K.; Kang, F. Y.; Li, B. H.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018, 9, 3870.
[8]
Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082-4114.
[9]
Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium-sulfur battery. Nat. Commun. 2016, 7, 11722.
[10]
Zhang, B. W.; Sheng, T.; Wang, Y. X.; Chou, S. L.; Davey, K.; Dou, S. X.; Qiao, S. Z. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions. Angew. Chem., Int. Ed. 2019, 58, 1484-1488.
[11]
Xin, S.; Yin, Y. X.; Cuo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261-1265.
[12]
Luo, C.; Zhu, Y. J.; Wen, Y.; Wang, J. J.; Wang, C. S. Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium Ion batteries. Adv. Funct. Mater. 2014, 24, 4082-4089.
[13]
Li, Z. Q.; Yin, L. W. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se batteries with superior storage capacity and perfect cycling stability. Nanoscale 2015, 7, 9597-9606.
[14]
Luo, C.; Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Zheng, S. Y.; Liu, Y.; Langrock, A.; Wang, C. S. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7, 8003-8010.
[15]
Yuan, B. B.; Sun, X. Z.; Zeng, L. C.; Yu, Y.; Wang, Q. S. A freestanding and long-life sodium-selenium cathode by encapsulation of selenium into microporous multichannel carbon nanofibers. Small 2018, 14, 1703252.
[16]
Deng, Y. R.; Gong, L. L.; Pan, Y. L.; Cheng, X. D.; Zhang, H. P. A long life sodium-selenium cathode by encapsulating selenium into N-doped interconnected carbon aerogels. Nanoscale 2019, 11, 11671-11678.
[17]
Li, Z.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. Mesoporous carbon@titanium nitride hollow spheres as an efficient SeS2 host for advanced Li-SeS2 batteries. Angew. Chem., Int. Ed. 2017, 56, 16003-16007.
[18]
Zhang, J. T.; Li, Z.; Lou, X. W. A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew. Chem., Inte. Ed. 2017, 56, 14107-14112.
[19]
Li, Z.; Zhang, J. T.; Lu, Y.; Lou, X. W. A pyrolyzed polyacrylonitrile/ selenium disulfide composite cathode with remarkable lithium and sodium storage performances. Sci. Adv. 2018, 4, eaat1687.
[20]
Pekala, R. W.; Farmer, J. C.; Alviso, C. T.; Tran, T. D.; Mayer, S. T.; Miller, J. M.; Dunn, B. Carbon aerogels for electrochemical applications. J. Non-Crystall. Solids 1998, 225, 74-80.
[21]
Biener, J.; Stadermann, M.; Suss, M.; Worsley, M. A.; Biener, M. M.; Rose, K. A.; Baumann, T. F. Advanced carbon aerogels for energy applications. Energy Environ. Sci. 2011, 4, 656-667.
[22]
Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574-3592.
[23]
Tan, Z. Q.; Ni, K.; Chen, G. X.; Zeng, W. C.; Tao, Z. C.; Ikram, M.; Zhang, Q. B.; Wang, H. J.; Sun, L. T.; Zhu, X. J. et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv. Mater. 2017, 29, 1603414.
[24]
Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; Ischenko, A. V.; Kibis, L. S.; Boronin, A. I.; Chesalov, Y. A.; Kochubey, D. I.; Romanenko, A. I.; Anikeeva, O. B. et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 2009, 47, 1922-1929.
[25]
Cai, W.; Feng, X. M.; Wang, B. B.; Hu, W. Z.; Yuan, B. H.; Hong, N. N.; Hu, Y. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chem. Eng. J. 2017, 316, 514-524.
[26]
Cai, W.; Wang, J. L.; Pan, Y.; Guo, W. W.; Mu, X. W.; Feng, X. M.; Yuan, B. H.; Wang, X.; Hu, Y. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J. Hazard. Mater. 2018, 352, 57-69.
[27]
Pan, Y. L.; Cheng, X. D.; Gong, L. L.; Shi, L.; Zhou, T.; Deng, Y. R.; Zhang, H. P. Double-morphology CoS2 anchored on N-doped multichannel carbon nanofibers as high-performance anode materials for Na-Ion batteries. Acs Appl. Mater. Interfaces 2018, 10, 31441-31451.
[28]
Wang, J. L.; Ma, C.; Mu, X. W.; Cai, W.; Liu, L. X.; Zhou, X.; Hu, W. Z.; Hu, Y. Construction of multifunctional MoSe2 hybrid towards the simultaneous improvements in fire safety and mechanical property of polymer. J. Hazard. Mater. 2018, 352, 36-46.
[29]
Wang, J. L.; Zhang, D. C.; Zhang, Y.; Cai, W.; Yao, C. X.; Hu, Y.; Hu, W. Z . Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J. Hazard. Mater. 2019, 362, 482-494.
[30]
Pan, Y. L.; Cheng, X. D.; Gong, L. L.; Shi, L.; Deng, Y. R.; Zhang, H. P. Highly reversible Na ion storage in N-doped polyhedral carbon-coated transition-metal chalcogenides by optimizing the nanostructure and surface engineering. J. Mater. Chem. A 2018, 6, 18967-18978.
[31]
Pan, Y. L.; Cheng, X. D.; Huang, Y. J.; Gong, L. L.; Zhang, H. P. CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-Ion batteries. Acs Appl. Mater. Interfaces 2017, 9, 35820-35828.
[32]
Pan, Y. L.; Cheng, X. D.; Gong, L. L.; Shi, L.; Zhang, H. P. Nanoflower-like N-doped C/CoS2 as high-performance anode materials for Na-ion batteries. Nanoscale 2018, 10, 20813-20820.
[33]
Ding, J.; Zhou, H.; Zhang, H. L.; Tong, L. Y.; Mitlin, D. Selenium impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries. Adv. Energy Mater. 2018, 8, 1701918.
[34]
Han, K.; Liu, Z.; Shen, J. M.; Lin, Y. Y.; Dai, F.; Ye, H. Q. A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 2015, 25, 455-463.
Nano Research
Pages 967-974
Cite this article:
Deng Y, Gong L, Ahmed H, et al. N-doped interconnected carbon aerogels as an efficient SeS2 host for long life Na-SeS2 batteries. Nano Research, 2020, 13(4): 967-974. https://doi.org/10.1007/s12274-020-2726-8
Topics:

788

Views

14

Crossref

N/A

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 30 October 2019
Revised: 10 February 2020
Accepted: 21 February 2020
Published: 11 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return