Journal Home > Volume 13 , Issue 4

Doping can improve the band alignment at the metal-semiconductor interface to modify the corresponding Schottky barrier, which is crucial for the realization of high-performance logic components. Here, we systematically investigated a convenient and effective method, ultraviolet ozone treatment, for p-type doping of MoTe2 field-effect transistors to enormously enhance the corresponding electrical performance. The resulted hole concentration and mobility are near 100 times enhanced to be ~ 1.0 × 1013 cm-2 and 101.4 cm2/(V·s), respectively, and the conductivity is improved by 5 orders of magnitude. These values are comparable to the highest ones ever obtained via annealing doping or non-lithographic fabrication methods at room temperature. Compared with the pristine one, the photoresponsivity (522 mA/W) is enhanced approximately 100 times. Such excellent performances can be attributed to the sharply reduced Schottky barrier because of the surface charge transfer from MoTe2 to MoOx (x < 3), as proved by photoemission spectroscopy. Additionally, the p-doped devices exhibit excellent stability in ambient air. Our findings show significant potential in future nanoelectronic and optoelectronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment

Show Author's information Xiaoming Zheng1,2Xueao Zhang3Yuehua Wei2Jinxin Liu1Hang Yang2Xiangzhe Zhang2Shitan Wang1Haipeng Xie1Chuyun Deng2Yongli Gao1,4Han Huang1( )
Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
College of Arts and Science, National University of Defense Technology, Changsha 410073, China
College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

Abstract

Doping can improve the band alignment at the metal-semiconductor interface to modify the corresponding Schottky barrier, which is crucial for the realization of high-performance logic components. Here, we systematically investigated a convenient and effective method, ultraviolet ozone treatment, for p-type doping of MoTe2 field-effect transistors to enormously enhance the corresponding electrical performance. The resulted hole concentration and mobility are near 100 times enhanced to be ~ 1.0 × 1013 cm-2 and 101.4 cm2/(V·s), respectively, and the conductivity is improved by 5 orders of magnitude. These values are comparable to the highest ones ever obtained via annealing doping or non-lithographic fabrication methods at room temperature. Compared with the pristine one, the photoresponsivity (522 mA/W) is enhanced approximately 100 times. Such excellent performances can be attributed to the sharply reduced Schottky barrier because of the surface charge transfer from MoTe2 to MoOx (x < 3), as proved by photoemission spectroscopy. Additionally, the p-doped devices exhibit excellent stability in ambient air. Our findings show significant potential in future nanoelectronic and optoelectronic applications.

Keywords: Schottky barrier, MoTe2, ultraviolet ozone, surface charge transfer, air stable hole doping

References(47)

[1]
Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.
[2]
Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030-3034.
[3]
Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.
[4]
Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931-7936.
[5]
Wan, W.; Zhan, L. J.; Shih, T. M.; Zhu, Z. W.; Lu, J.; Huang, J. J.; Zhang, Y.; Huang, H.; Zhang, X. A.; Cai, W. W. Controlled growth of MoS2 via surface-energy alterations. Nanotechnology 2019, 31, 035601.
[6]
Guo, J. J.; Jiang, J.; Yang, B. C. Low-voltage electric-double-layer MoS2 transistor gated via water solution. Solid State Electron. 2018, 150, 8-15.
[7]
Guo, J. J.; Xie, D. D.; Yang, B. C.; Jiang, J. Low-power logic computing realized in a single electric-double-layer MoS2 transistor gated with polymer electrolyte. Solid State Electron. 2018, 144, 1-6.
[8]
Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302-8308.
[9]
Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.
[10]
Wu, D.; Shi, J.; Zheng, X. M.; Liu, J. X.; Dou, W. D.; Gao, Y. L.; Yuan, X. M.; Ouyang, F. P.; Huang, H. CVD grown MoS2 nanoribbons on MoS2 covered sapphire(0001) without catalysts. Phys. Status Solidi RRL. 2019, 13, 1900063.
[11]
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[12]
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[13]
Mleczko, M. J.; Yu, A. C.; Smyth, C. M.; Chen, V.; Shin, Y. C.; Chatterjee, S.; Tsai, Y. C.; Nishi, Y.; Wallace, R. M.; Pop, E. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019, 19, 6352-6362.
[14]
Lee, S.; Tang, A.; Aloni, S.; Philip Wong, H. S. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett. 2016, 16, 276-281.
[15]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[16]
Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099-1107.
[17]
Zhao, P. D.; Kiriya, D.; Azcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Kc, S. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808-10814.
[18]
Tang, B. S.; Yu, Z. G.; Huang, L.; Chai, J. W.; Wong, S. L.; Deng, J.; Yang, W. F.; Gong, H.; Wang, S. J.; Ang, K. W. et al. Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 2018, 12, 2506-2513.
[19]
Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.
[20]
Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128-2137.
[21]
Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437-5443.
[22]
Kaushik, N.; Karmakar, D.; Nipane, A.; Karande, S.; Lodha, S. Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 2016, 8, 256-263.
[23]
McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments. ACS Nano 2014, 8, 6265-6272.
[24]
Rai, A.; Valsaraj, A.; Movva, H. C. P.; Roy, A.; Ghosh, R.; Sonde, S.; Kang, S.; Chang, J.; Trivedi, T.; Dey, R. et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett. 2015, 15, 4329-4336.
[25]
Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X. T.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337-1342.
[26]
Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mater. 2012, 24, 5408-5427.
[27]
Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223-4230.
[28]
Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X. A.; Ping Hu, W.; Özyilmaz, B.; Neto, A. H. C.; Wee, A. T. S. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.
[29]
Ho, P. H.; Chang, Y. R.; Chu, Y. C.; Li, M. K.; Tsai, C. A.; Wang, W. H.; Ho, C. H.; Chen, C. W.; Chiu, P. W. High-mobility InSe transistors: The role of surface oxides. ACS Nano 2017, 11, 7362-7370.
[30]
Fang, L.; Chen, H. T.; Yuan, X. M.; Huang, H.; Chen, G.; Li, L.; Ding, J. N.; He, J.; Tao, S. H. Quick optical identification of the defect formation in monolayer WSe2 for growth optimization. Nanoscale Res Lett. 2019, 14, 274.
[31]
Yamamoto, M.; Dutta, S.; Aikawa, S.; Nakaharai, S.; Wakabayashi, K.; Fuhrer, M. S.; Ueno, K.; Tsukagoshi, K. Self-limiting layer-by-layer oxidation of atomically thin WSe2. Nano lett. 2015, 15, 2067-2073.
[32]
Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman Scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895-3903.
[33]
Lezama, I. G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A. F. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 2015, 15, 2336-2342.
[34]
Bernède, J. C.; Amory, C.; Assmann, L.; Spiesser, M. X-ray photoelectron spectroscopy study of MoTe2 single crystals and thin films. Appl. Surf. Sci. 2003, 219, 238-248.
[35]
Zheng, X. M.; Wei, Y. H.; Deng, C. Y.; Huang, H.; Yu, Y. Y.; Wang, G.; Peng, G.; Zhu, Z. H.; Zhang, Y.; Jiang, T. et al. Controlled layer-by-layer oxidation of MoTe2 via O3 exposure. ACS Appl. Mater. Interfaces 2018, 10, 30045-30050.
[36]
Zheng, X. M.; Wei, Y. H.; Liu, J. X.; Wang, S. T.; Shi, J.; Yang, H.; Peng, G.; Deng, C. Y.; Luo, W.; Zhao, Y. et al. A homogeneous p-n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469-13476.
[37]
Huang, J. H.; Hsu, H. H.; Wang, D.; Lin, W. T.; Cheng, C. C.; Lee, Y. J.; Hou, T. H. Polymorphism control of layered MoTe2 through two-dimensional solid-phase crystallization. Sci. Rep. 2019, 9, 8810.
[38]
Xiang, D.; Han, C.; Zhang, J. L.; Chen, W. Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci. Rep. 2014, 4, 4891.
[39]
Battaglia, C.; Yin, X. T.; Zheng, M.; Sharp, I. D.; Chen, T.; McDonnell, S.; Azcatl, A.; Carraro, C.; Ma, B. W.; Maboudian, R. et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 2014, 14, 967-971.
[40]
Xie, H. P.; Huang, H.; Cao, N. T.; Zhou, C. H.; Niu, D. M.; Gao, Y. L. Effects of annealing on structure and composition of LSMO thin films. Phys. B: Cond. Matt. 2015, 477, 14-19.
[41]
Sun, H. L.; Liang, Z. F.; Shen, K. C.; Hu, J. B.; Ji, G. W.; Li, Z. S.; Li, H. Y.; Zhu, Z. Y.; Li, J.; Gao, X. Y. et al. Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface. Surf. Sci. 2017, 661, 34-41.
[42]
Choi, K.; Lee, Y. T.; Kim, J. S.; Min, S. W.; Cho, Y.; Pezeshki, A.; Hwang, D. K.; Im, S. Non-lithographic fabrication of all-2D α-MoTe2 dual gate transistors. Adv. Funct. Mater. 2016, 26, 3146-3153.
[43]
Qu, D. S.; Liu, X.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.
[44]
Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huang, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.
[45]
Liu, J. C.; Liu, X.; Chen, Z. J.; Miao, L. L.; Liu, X. Q.; Li, B.; Tang, L. M.; Chen, K. Q.; Liu, Y.; Li, J. B. et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res. 2019, 12, 463-468.
[46]
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.
DOI
[47]
Chang, Y. R.; Ho, P. H.; Wen, C. Y.; Chen, T. P.; Li, S. S.; Wang, J. Y.; Li, M. K.; Tsai, C. A.; Sankar, R.; Wang, W. H. et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector. ACS Photonics 2017, 4, 2930-2936.
File
12274_2020_2724_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 November 2019
Revised: 14 February 2020
Accepted: 21 February 2020
Published: 11 April 2020
Issue date: April 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 11874427 and 11874423). Dr. Han Huang acknowledges support from the Innovation-Driven project of Central South University (No. 2017CX018) and from the Natural Science Foundation of Hunan province (No. 2016JJ1021). Mr. Xiaoming Zheng acknowledges the support from the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts066).

Return