Journal Home > Volume 13 , Issue 10

Over the past decade, numerous studies have attempted to enhance the effectiveness of radiotherapy (external beam radiotherapy and internal radioisotope therapy) for cancer treatment. However, the low radiation absorption coefficient and radiation resistance of tumors remain major critical challenges for radiotherapy in the clinic. With the development of nanomedicine, nanomaterials in combination with radiotherapy offer the possibility to improve the efficiency of radiotherapy in tumors. Nanomaterials act not only as radiosensitizers to enhance radiation energy, but also as nanocarriers to deliver therapeutic units in combating radiation resistance. In this review, we discuss opportunities for a synergistic cancer therapy by combining radiotherapy based on nanomaterials designed for chemotherapy, photodynamic therapy, photothermal therapy, gas therapy, genetic therapy, and immunotherapy. We highlight how nanomaterials can be utilized to amplify antitumor radiation responses and describe cooperative enhancement interactions among these synergistic therapies. Moreover, the potential challenges and future prospects of radio-based nanomedicine to maximize their synergistic efficiency for cancer treatment are identified.


menu
Abstract
Full text
Outline
About this article

Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy

Show Author's information Xi Yang1Ling Gao1Qing Guo2Yongjiang Li1Yue Ma3Ju Yang3Changyang Gong1( )Cheng Yi1( )
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
Department of Oncology, Taizhou People’s Hospital, Taizhou 225300, China
Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China

Abstract

Over the past decade, numerous studies have attempted to enhance the effectiveness of radiotherapy (external beam radiotherapy and internal radioisotope therapy) for cancer treatment. However, the low radiation absorption coefficient and radiation resistance of tumors remain major critical challenges for radiotherapy in the clinic. With the development of nanomedicine, nanomaterials in combination with radiotherapy offer the possibility to improve the efficiency of radiotherapy in tumors. Nanomaterials act not only as radiosensitizers to enhance radiation energy, but also as nanocarriers to deliver therapeutic units in combating radiation resistance. In this review, we discuss opportunities for a synergistic cancer therapy by combining radiotherapy based on nanomaterials designed for chemotherapy, photodynamic therapy, photothermal therapy, gas therapy, genetic therapy, and immunotherapy. We highlight how nanomaterials can be utilized to amplify antitumor radiation responses and describe cooperative enhancement interactions among these synergistic therapies. Moreover, the potential challenges and future prospects of radio-based nanomedicine to maximize their synergistic efficiency for cancer treatment are identified.

Keywords: nanomaterials, cancer treatment, radiotherapy, synergistic therapies

References(147)

[1]
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. Ca-Cancer J. Clin. 2019, 69, 7-34.
[2]
Chan, S.; Rowbottom, L.; McDonald, R.; Bjarnason, G. A.; Tsao, M.; Danjoux, C.; Barnes, E.; Popovic, M.; Lam, H.; DeAngelis, C. et al. Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin. Oncol. 2017, 29, 231-238.
[3]
Schaue, D.; McBride, W. H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015, 12, 527-540.
[4]
Corradini, S.; Krug, D.; Meattini, I.; Matuschek, C.; Bölke, E.; Francolini, G.; Baumann, R.; Figlia, V.; Pazos, M.; Tonetto, F. et al. Preoperative radiotherapy: A paradigm shift in the treatment of breast cancer? A review of literature. Crit. Rev. Oncol. Hematol. 2019, 141, 102-111.
[5]
Lee, V. H.-F.; Yang, L.; Jiang, Y.; Kong, F.-M. S. Radiation therapy for thoracic malignancies. Hematol. Oncol. Clin. N 2020, 34, 109-125.
[6]
Lu, L.; Li, W.; Chen, L.; Su, Q.; Wang, Y.; Guo, Z.; Lu, Y.; Liu, B.; Qin, S. Radiation-induced intestinal damage: Latest molecular and clinical developments. Future Oncol. 2019, 15, 4105-4118.
[7]
Kalogeridi, M.-A.; Zygogianni, A.; Kyrgias, G.; Kouvaris, J.; Chatziioannou, S.; Kelekis, N.; Kouloulias, V. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J. Hepatol. 2015, 7, 101-112.
[8]
King, R. B.; McMahon, S. J.; Hyland, W. B.; Jain, S.; Butterworth, K. T.; Prise, K. M.; Hounsell, A. R.; McGarry, C. K. An overview of current practice in external beam radiation oncology with consideration to potential benefits and challenges for nanotechnology. Cancer Nanotechnol. 2017, 8, 3.
[9]
Hamoudeh, M.; Kamleh, M. A.; Diab, R.; Fessi, H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Delivery Rev. 2008, 60, 1329-1346.
[10]
Zhang, L.; Chen, H.; Wang, L.; Liu, T.; Yeh, J.; Lu, G.; Yang, L.; Mao, H. Delivery of therapeutic radioisotopes using nanoparticle platforms: Potential benefit in systemic radiation therapy. Nanotechnol. Sci. Appl. 2010, 3, 159-170.
[11]
Lim, K.; Stewart, J.; Kelly, V.; Xie, J.; Brock, K. K.; Moseley, J.; Cho, Y.-B.; Fyles, A.; Lundin, A.; Rehbinder, H. et al. Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 147-154.
[12]
Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Goncalves, F. Bone metastases: An overview. Oncol. Rev. 2017, 11, 321.
[13]
Wells, S. A., Jr.; Asa, S. L.; Dralle, H.; Elisei, R.; Evans, D. B.; Gagel, R. F.; Lee, N.; Machens, A.; Moley, J. F.; Pacini, F. et al. Revised american thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567-610.
[14]
Shirato, H.; Le, Q. T.; Kobashi, K.; Prayongrat, A.; Takao, S.; Shimizu, S.; Giaccia, A.; Xing, L.; Umegaki, K. Selection of external beam radiotherapy approaches for precise and accurate cancer treatment. J. Radiat. Res. 2018, 59, i2-i10.
[15]
Barker, H. E.; Paget, J. T.; Khan, A. A.; Harrington, K. J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409-425.
[16]
Peng, J.; Yang, Q.; Shi, K.; Xiao, Y.; Wei, X.; Qian, Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv. Drug Delivery Rev. 2019, 143, 37-67.
[17]
Fan, W.; Tang, W.; Lau, J.; Shen, Z.; Xie, J.; Shi, J.; Chen, X. Breaking the depth dependence by nanotechnology-enhanced x-ray-excited deep cancer theranostics. Adv. Mater. 2019, 31, e1806381.
[18]
Rancoule, C.; Magné, N.; Vallard, A.; Guy, J. B.; Rodriguezlafrasse, C.; Deutsch, E.; Chargari, C. Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Lett. 2016, 375, 256-262.
[19]
Song, G. S.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996.
[20]
Haume, K.; Rosa, S.; Grellet, S.; Smialek, M. A.; Butterworth, K. T.; Solov'yov, A. V.; Prise, K. M.; Golding, J.; Mason, N. J. Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnol. 2016, 7, 8.
[21]
Wang, A. Z.; Tepper, J. E. Nanotechnology in radiation oncology. J. Clin. Oncol. 2014, 32, 2879-2885.
[22]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 2013, 65, 71-79.
[23]
Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007, 19, 397-417.
[24]
Yang, Y. S.; Carney, R. P.; Stellacci, F.; Irvine, D. J. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. ACS nano 2014, 8, 8992-9002.
[25]
Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A. L.; Kao, G.; Dorsey, J.; Tsourkas, A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS nano 2014, 8, 104-112.
[26]
Cheng, L.; Shen, S.; Shi, S.; Yi, Y.; Liu, Z. FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv. Funct. Mater. 2016, 26, 2185-2197.
[27]
He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/MnO2 composite networks as ultra light and flexible supercapacitor electrodes. ACS nano 2013, 7, 174-182.
[28]
Yermolayeva, Y. V.; Korshikova, T. I.; Tolmachev, A. V.; Yavetskiy, R. P. X-ray luminescence of core-shell structured SiO2/Lu2O3:Eu3+ and SiO2/Lu2Si2O7:Eu3+ particles. Radiat. Meas. 2011, 46, 551-554.
[29]
Zhang, X.; Luo, Z.; Jie, C.; Xiu, S.; Xie, J. Ultrasmall Au 10-12 (sg) 10-12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565-4568.
[30]
Zhao, N.; Yan, L.; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. J. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem. Rev. 2019, 119, 1666-1762.
[31]
Xie, J.; Gong, L.; Zhu, S.; Yong, Y.; Gu, Z.; Zhao, Y. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 2019, 31, e1802244.
[32]
Cao, W.; Gu, Y.; Meineck, M.; Xu, H. The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chem. - Asian J. 2014, 9, 48-57.
[33]
Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. The concurrent chemoradiation paradigm - general principles. Nat. Clin. Pract. Oncol. 2007, 4, 86-100.
[34]
Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. The chemoradiation paradigm in head and neck cancer. Nat. Clin. Pract. Oncol. 2007, 4, 156-171.
[35]
Sun, D.; Chen, J.; Wang, Y.; Ji, H.; Peng, R.; Jin, L.; Wu, W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019, 9, 6885-6900.
[36]
Oliveira Pinho, J.; Matias, M.; Gaspar, M. M. Emergent nanotechnological strategies for systemic chemotherapy against melanoma. Nanomaterials 2019, 9, E1455.
[37]
Curran, W. J., Jr.; Paulus, R.; Langer, C. J.; Komaki, R.; Lee, J. S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S. A.; Gore, E. et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: Randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 2011, 103, 1452-1460.
[38]
Lungu, I. I.; Grumezescu, A. M.; Volceanov, A.; Andronescu, E. Nanobiomaterials used in cancer therapy: An up-to-date overview. Molecules 2019, 24, 3547.
[39]
Raza, F.; Zafar, H.; You, X.; Khan, A.; Wu, J.; Ge, L. Cancer nanomedicine: Focus on recent developments and self-assembled peptide nanocarriers. J. Mater. Chem. B 2019, 7, 7639-7655.
[40]
Eloy, J. O.; Petrilli, R.; Trevizan, L. N. F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf., B 2017, 159, 454-467.
[41]
Davies, C. d. L.; Lundstrøm, L. M.; Frengen, J.; Eikenes, L.; Bruland S, Ø. S.; Kaalhus, O.; Hjelstuen, M. H. B.; Brekken, C. Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res. 2004, 64, 547-553.
[42]
Zhang, X.; Yang, H.; Gu, K.; Chen, J.; Rui, M.; Jiang, G.-L. In vitro and in vivo study of a nanoliposomal cisplatin as a radiosensitizer. Int. J. Nanomed. 2011, 6, 437-444.
[43]
Liu, H.; Xie, Y.; Zhang, Y.; Cai, Y.; Li, B.; Mao, H.; Liu, Y.; Lu, J.; Zhang, L.; Yu, R. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials 2017, 121, 130-143.
[44]
Zhang, R.; Song, X.; Liang, C.; Yi, X.; Song, G.; Chao, Y.; Yang, Y.; Yang, K.; Feng, L.; Liu, Z. Catalase-loaded cisplatin-prodrug- constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017, 138, 13-21.
[45]
Swain, S.; Sahu, P. K.; Beg, S.; Babu, S. M. Nanoparticles for cancer targeting: Current and future directions. Curr. Drug Delivery 2016, 13, 1290-1302.
[46]
Baumann, B. C.; Kao, G. D.; Mahmud, A.; Harada, T.; Swift, J.; Chapman, C.; Xu, X.; Discher, D. E.; Dorsey, J. F. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 2013, 4, 64-79.
[47]
Yu, Y.; Xu, S.; You, H.; Zhang, Y.; Yang, B.; Sun, X.; Yang, L.; Chen, Y.; Fu, S.; Wu, J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Delivery 2017, 24, 75-82.
[48]
Mao, H.; Xie, Y.; Ju, H.; Mao, H.; Zhao, L.; Wang, Z.; Hua, L.; Zhao, C.; Li, Y.; Yu, R. et al. Design of tumor microenvironment- responsive drug-drug micelle for cancer radiochemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 33923-33935.
[49]
Cui, F.-B.; Li, R.-T.; Liu, Q.; Wu, P.-Y.; Hu, W.-J.; Yue, G.-F.; Ding, H.; Yu, L.-X.; Qian, X.-P.; Liu, B.-R. Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-PEP-PCL nanoparticles in gastric cancer. Cancer Lett. 2014, 346, 53-62.
[50]
Wiedenmann, N.; Valdecanas, D.; Hunter, N.; Hyde, S.; Buchholz, T. A.; Milas, L.; Mason, K. A. 130-nm albumin-bound paclitaxel enhances tumor radiocurability and therapeutic gain. Clin. Cancer Res. 2007, 13, 1868-1874.
[51]
Bouras, A.; Kaluzova, M.; Hadjipanayis, C. G. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J. Neuro-Oncol. 2015, 124, 13-22.
[52]
Meng, L.; Cheng, Y.; Gan, S.; Zhang, Z.; Tong, X.; Xu, L.; Jiang, X.; Zhu, Y.; Wu, J.; Yuan, A. et al. Facile deposition of manganese dioxide to albumin-bound paclitaxel nanoparticles for modulation of hypoxic tumor microenvironment to improve chemoradiation therapy. Mol. Pharmaceutics 2018, 15, 447-457.
[53]
Wang, Z.; Shao, D.; Chang, Z.; Lu, M.; Wang, Y.; Yue, J.; Yang, D.; Li, M.; Xu, Q.; Dong, W.-F. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 2017, 11, 12732-12741.
[54]
He, L.; Lai, H.; Chen, T. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials 2015, 51, 30-42.
[55]
Chen, Y.; Song, G.; Dong, Z.; Yi, X.; Chao, Y.; Liang, C.; Yang, K.; Cheng, L.; Liu, Z. Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small 2017, 13, 1602869.
[56]
GuhaSarkar, S.; Pathak, K.; Sudhalkar, N.; More, P.; Goda, J. S.; Gota, V.; Banerjee, R. Synergistic locoregional chemoradiotherapy using a composite liposome-in-gel system as an injectable drug depot. Int. J. Nanomed. 2016, 11, 6435-6448.
[57]
Xu, S.; Tang, Y. Y.; Yu, Y. X.; Yun, Q.; Yang, J. P.; Zhang, H.; Peng, Q.; Sun, X.; Yang, L. L.; Fu, S. et al. Novel composite drug delivery system as a novel radio sensitizer for the local treatment of cervical carcinoma. Drug Delivery 2017, 24, 1139-1147.
[58]
Lan, M.; Zhao, S.; Liu, W.; Lee, C. S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthcare Mater. 2019, 8, e1900132.
[59]
Clement, S.; Deng, W.; Camilleri, E.; Wilson, B. C.; Goldys, E. M. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Sci. Rep. 2016, 6, 19954.
[60]
Wang, G. D.; Nguyen, H. T.; Chen, H.; Cox, P. B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics 2016, 6, 2295-2305.
[61]
Abliz, E.; Collins, J. E.; Bell, H.; Tata, D. B. Novel applications of diagnostic x-rays in activating a clinical photodynamic drug: Photofrin ii through x-ray induced visible luminescence from “rare-earth” formulated particles. J. X-Ray Sci. Technol. 2011, 19, 521-530.
[62]
Bulin, A. L.; Truillett, C.; Chouikrat, R.; Lux, F.; Frochot, C.; Amans, D.; Ledoux, G.; Tillement, O.; Perriat, P.; Barberi-Heyob, M. et al. X-ray-induced singlet oxygen activation with nanoscintillator- coupled porphyrins. J. Phys. Chem. C 2013, 117, 21583-21589.
[63]
Chen, H.; Sun, X.; Wang, G. D.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J.; Shen, B. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided x-ray induced photodynamic therapy of deep-seated tumors. Mater. Horiz. 2017, 4, 1092-1101.
[64]
Chen, Z.; Zhao, K.; Bu, W.; Ni, D.; Shi, J. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2014, 127, 1770-1774.
[65]
Elmenoufy, A. H.; Tang, Y. a.; Hu, J.; Xu, H.; Yang, X. A novel deep photodynamic therapy modality combined with CT imaging established via x-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem. Commun. 2015, 51, 12247-12250.
[66]
Generalov, R.; Kuan, W. B.; Chen, W.; Kristensen, S.; Juzenas, P. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf. B 2015, 129, 79-86.
[67]
Homayoni, H.; Jiang, K.; Zou, X.; Hossu, M.; Rashidi, L. H.; Chen, W. Enhancement of protoporphyrin IX performance in aqueous solutions for photodynamic therapy. Photodiagn. Photodyn. Ther. 2015, 12, 258-266.
[68]
Kascakova, S.; Giuliani, A.; Lacerda, S.; Pallier, A.; Mercere, P.; Toth, E.; Refregiers, M. X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res. 2015, 8, 2373-2379.
[69]
Kirakci, K.; Kubát, P.; Fejfarová, K.; Martinčík, J.; Nikl, M.; Lang, K. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators. Inorg. Chem. 2016, 55, 803-809.
[70]
Liang, S.; Li, P. P.; Wen, Y.; Lin, X. H.; Yang, H. H. Low-dose x-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496.
[71]
Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G. Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 043901.
[72]
Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Lan, G.; Tang, H.; Pelizzari, C.; Fu, Y.-X.; Spiotto, M. T. et al. Low-dose x-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[73]
Ma, L.; Zou, X.; Chen, W. A new x-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol. 2014, 10, 1501-1508.
[74]
Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S. C.; Attolini, G. et al. Porphyrin conjugated SiC/SiOx nanowires for x-ray-excited photodynamic therapy. Sci. Rep. 2015, 5, 7606.
[75]
Scaffidi, J. P.; Gregas, M. K.; Lauly, B.; Zhang, Y.; Vo-Dinh, T. Activity of psoralen-functionalized nanoscintillators against cancer cells upon x-ray excitation. ACS nano 2011, 5, 4679-4687.
[76]
Sharmah, A.; Yao, Z.; Lu, L.; Guo, T. X-ray-induced energy transfer between nanomaterials under x-ray irradiation. J. Phys. Chem. C 2016, 120, 3054-3060.
[77]
Takahashi, J.; Misawa, M. Analysis of potential radiosensitizing materials for x-ray-induced photodynamic therapy. Nanobiotechnology 2007, 3, 116-126.
[78]
Tang, Y. a.; Hu, J.; Elmenoufy, A. H.; Yang, X. Highly efficient fret system capable of deep photodynamic therapy established on x-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 12261-12269.
[79]
Wang, Z.; Chiu, Y.-H.; Honz, K.; Mak, K. F.; Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 2018, 18, 137-143.
[80]
Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159-1166.
[81]
Abrahamse, H.; Kruger, C. A.; Kadanyo, S.; Mishra, A. Nanoparticles for advanced photodynamic therapy of cancer. Photomed. Laser Surg. 2017, 35, 581-588.
[82]
Yang, M.; Yang, T.; Mao, C. Enhancement of photodynamic cancer therapy by physical and chemical factors. Angew. Chem., Int. Ed. 2019, 58, 14066-14080.
[83]
Zou, X.; Yao, M.; Ma, L.; Hossu, M.; Han, X.; Juzenas, P.; Chen, W. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine 2014, 9, 2339-2351.
[84]
Chen, H.; Wang, G. D.; Chuang, Y.-J.; Zhen, Z.; Chen, X.; Biddinger, P.; Hao, Z.; Liu, F.; Shen, B.; Pan, Z. et al. Nanoscintillator-mediated x-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett. 2015, 15, 2249-2256.
[85]
Ahmad, F.; Wang, X.; Jiang, Z.; Yu, X.; Liu, X.; Mao, R.; Chen, X.; Li, W. Codoping enhanced radioluminescence of nanoscintillators for x-ray-activated synergistic cancer therapy and prognosis using metabolomics. ACS Nano 2019, 13, 10419-10433.
[86]
Zhong, X.; Wang, X.; Zhan, G.; Tang, Y. a.; Yao, Y.; Dong, Z.; Hou, L.; Zhao, H.; Zeng, S.; Hu, J. et al. NaCeF4:Gd,Tb scintillator as an x-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019, 19, 8234-8244.
[87]
Ma, L.; Zou, X.; Bui, B.; Chen, W.; Song, K. H.; Solberg, T. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 2014, 105, 013702.
[88]
Sun, W.; Luo, L.; Feng, Y.; Cai, Y.; Zhuang, Y.; Xie, R.-J.; Chen, X.; Chen, H. Aggregation-induced emission gold clustoluminogens for enhanced low-dose x-ray-induced photodynamic therapy. Angew. Chem., Int. Ed. 2019, 58, 1-8..
[89]
Sun, W.; Shi, T.; Luo, L.; Chen, X.; Lv, P.; Lv, Y.; Zhuang, Y.; Zhu, J.; Liu, G.; Chen, X. et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose x-ray-induced deep- penetrating photodynamic therapy. Adv. Mater. 2019, 31, e1808024.
[90]
Lan, G.; Ni, K.; Xu, R.; Lu, K.; Lin, Z.; Chan, C.; Lin, W. Nanoscale metal-organic layers for deeply penetrating x-ray-induced photodynamic therapy. Angew. Chem., Int. Ed. 2017, 56, 12102-12106.
[91]
Ni, K.; Lan, G.; Veroneau, S. S.; Duan, X.; Song, Y.; Lin, W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy- radiodynamic therapy. Nat. Commun. 2018, 9, 4321-4321.
[92]
Zhang, H.; Cui, W.; Qu, X.; Wu, H.; Qu, L.; Zhang, X.; Mäkilä, E.; Salonen, J.; Zhu, Y.; Yang, Z. et al. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 7744-7749.
[93]
Doughty, A. C. V.; Hoover, A. R.; Layton, E.; Murray, C. K.; Howard, E. W.; Chen, W. R. Nanomaterial applications in photothermal therapy for cancer. Materials 2019, 12, 779.
[94]
Alves, C. G.; Lima-Sousa, R.; de Melo-Diogo, D.; Louro, R. O.; Correia, I. J. Ir780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm. 2018, 542, 164-175.
[95]
Chen, H.; Zhao, Y. Applications of light-responsive systems for cancer theranostics. ACS Appl. Mater. Interfaces 2018, 10, 21021-21034.
[96]
Lu, S.; Li, X.; Zhang, J.; Peng, C.; Shen, M.; Shi, X. Dendrimer- stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv. Sci. 2018, 5, 1801612.
[97]
Wang, S.; You, Q.; Wang, J.; Song, Y.; Cheng, Y.; Wang, Y.; Yang, S.; Yang, L.; Li, P.; Lu, Q. et al. MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO2-MSiO2@au nanoparticles. Nanoscale 2019, 11, 6270-6284.
[98]
Deng, Y.; Tian, X.; Lu, S.; Xie, M.; Hu, H.; Zhang, R.; Lv, F.; Cheng, L.; Gu, H.; Zhao, Y. et al. Fabrication of multifoliate ptru bimetallic nanocomplexes for computed tomography imaging and enhanced synergistic thermoradiotherapy. ACS Appl. Mater. Interfaces 2018, 10, 31106-31113.
[99]
Feng, L.; Dong, Z.; Liang, C.; Chen, M.; Tao, D.; Cheng, L.; Yang, K.; Liu, Z. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018, 181, 81-91.
[100]
Li, J.; Zu, X.; Liang, G.; Zhang, K.; Liu, Y.; Li, K.; Luo, Z.; Cai, K. Octopod PtCu nanoframe for dual-modal imaging-guided synergistic photothermal radiotherapy. Theranostics 2018, 8, 1042-1058.
[101]
Tang, W.; Dong, Z.; Zhang, R.; Yi, X.; Yang, K.; Jin, M.; Yuan, C.; Xiao, Z.; Liu, Z.; Cheng, L. Multifunctional two-dimensional core-shell mxene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS nano 2019, 13, 284-294.
[102]
Yang, G.; Zhang, R.; Liang, C.; Zhao, H.; Yi, X.; Shen, S.; Yang, K.; Cheng, L.; Liu, Z. Manganese dioxide coated ws2@fe3o4/ssio2 nanocomposites for ph-responsive MR imaging and oxygen- elevated synergetic therapy. Small 2018, 14, 1702664.
[103]
Yong, Y.; Cheng, X.; Bao, T.; Zu, M.; Yan, L.; Yin, W.; Ge, C.; Wang, D.; Gu, Z.; Zhao, Y. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image- guided photothermal/radiotherapy synergistic therapy. ACS Nano 2015, 9, 12451-12463.
[104]
Li, A.; Li, X.; Yu, X.; Li, W.; Zhao, R.; An, X.; Cui, D.; Chen, X.; Li, W. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials 2017, 112, 164-175.
[105]
Song, G.; Liang, C.; Gong, H.; Li, M.; Zheng, X.; Cheng, L.; Yang, K.; Jiang, X.; Liu, Z. Core-shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110-6117.
[106]
Du, J.; Gu, Z.; Yan, L.; Yong, Y.; Yi, X.; Zhang, X.; Liu, J.; Wu, R.; Ge, C.; Chen, C. et al. Poly(vinylpyrollidone)- and selenocysteine- modified bi2se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv. Mater. 2017, 29, 1701268.
[107]
Wang, J.; Tan, X.; Pang, X.; Liu, L.; Tan, F.; Li, N. MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual- modal imaging guided synergistic photothermal/radiation therapy. ACS Appl. Mater. Interfaces 2016, 8, 24331-24338.
[108]
Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041-13048.
[109]
Zhou, R.; Wang, H.; Yang, Y.; Zhang, C.; Dong, X.; Du, J.; Yan, L.; Zhang, G.; Gu, Z.; Zhao, Y. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials 2019, 189, 11-22.
[110]
Zhou, Y.; Hu, Y.; Sun, W.; Lu, S.; Cai, C.; Peng, C.; Yu, J.; Popovtzer, R.; Shen, M.; Shi, X. Radiotherapy-sensitized tumor photothermal ablation using γ-polyglutamic acid nanogels loaded with polypyrrole. Biomacromolecules 2018, 19, 2034-2042.
[111]
Yu, L.; Hu, P.; Chen, Y. Gas-generating nanoplatforms: Material chemistry, multifunctionality, and gas therapy. Adv. Mater. 2018, 30, e1801964.
[112]
Fan, W.; Lu, N.; Shen, Z.; Tang, W.; Shen, B.; Cui, Z.; Shan, L.; Yang, Z.; Wang, Z.; Jacobson, O. et al. Generic synthesis of small- sized hollow mesoporous organosilica nanoparticles for oxygen- independent x-ray-activated synergistic therapy. Nat. Commun. 2019, 10, 1241.
[113]
Liu, J.; Dong, J.; Zhang, T.; Peng, Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release 2018, 286, 64-73.
[114]
Fan, W.; Bu, W.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q.; Ni, D.; Cui, Z.; Zhao, K.; Bu, J. et al. X-ray radiation-controlled no-release for on-demand depth-independent hypoxic radiosensitization. Angew. Chem., Int. Ed. 2015, 54, 14026-14030.
[115]
Du, Z.; Zhang, X.; Guo, Z.; Xie, J.; Dong, X.; Zhu, S.; Du, J.; Gu, Z.; Zhao, Y. X-ray-controlled generation of peroxynitrite based on nanosized liluf4:Ce3+ scintillators and their applications for radiosensitization. Adv. Mater. 2018, 30, e1804046.
[116]
Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.
[117]
Song, G.; Chen, Y.; Liang, C.; Yi, X.; Liu, J.; Sun, X.; Shen, S.; Yang, K.; Liu, Z. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 2016, 28, 7143-7148.
[118]
Singh, B. N.; Prateeksha; Gupta, V. K.; Chen, J.; Atanasov, A. G. Organic nanoparticle-based combinatory approaches for gene therapy. Trends Biotechnol. 2017, S0167779917301907.
[119]
Xin, Y.; Huang, M.; Guo, W. W.; Huang, Q.; Zhang, L. Z.; Jiang, G. Nano-based delivery of RNAi in cancer therapy. Mol. Cancer 2017, 16, 134.
[120]
Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Delivery Rev. 2017, 115, 115-154.
[121]
Gaca, S.; Reichert, S.; Multhoff, G.; Wacker, M.; Hehlgans, S.; Botzler, C.; Gehrmann, M.; Rödel, C.; Kreuter, J.; Rödel, F. Targeting by CMHSP70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J. Control. Release 2013, 172, 201-206.
[122]
Yong, Y.; Zhang, C.; Gu, Z.; Du, J.; Guo, Z.; Dong, X.; Xie, J.; Zhang, G.; Liu, X.; Zhao, Y. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano 2017, 11, 7164-7176.
[123]
Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discovery 2019, 18, 175-196.
[124]
Huang, S.; Zhao, Q. Nanomedicine-combined immunotherapy for cancer. Curr. Med. Chem. 2019, 26, 1-14.
[125]
Carvalho, H. d. A.; Villar, R. C. Radiotherapy and immune response: The systemic effects of a local treatment. Clinics 2018, 73, e557s.
[126]
Filatenkov, A.; Baker, J.; Mueller, A. M. S.; Kenkel, J.; Ahn, G. O.; Dutt, S.; Zhang, N.; Kohrt, H.; Jensen, K.; Dejbakhsh-Jones, S. et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer Res. 2015, 21, 3727-3739.
[127]
McBride, W. H.; Chiang, C.-S.; Olson, J. L.; Wang, C.-C.; Hong, J.-H.; Pajonk, F.; Dougherty, G. J.; Iwamoto, K. S.; Pervan, M.; Liao, Y.-P. A sense of danger from radiation. Radiat. Res. 2004, 162, 1-19.
[128]
Schaue, D.; Kachikwu, E. L.; McBride, W. H. Cytokines in radiobiological responses: A review. Radiat. Res. 2012, 178, 505-523.
[129]
Weichselbaum, R. R.; Liang, H.; Deng, L.; Fu, Y.-X. Radiotherapy and immunotherapy: A beneficial liaison? Nat. Rev. Clin. Oncol. 2017, 14, 365-379.
[130]
Sharabi, A. B.; Lim, M.; DeWeese, T. L.; Drake, C. G. Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015, 16, e498-e509.
[131]
Song, W.; Musetti, S. N.; Huang, L. Nanomaterials for cancer immunotherapy. Biomaterials 2017, 148, 16-30.
[132]
Zhang, P.; Zhai, Y.; Cai, Y.; Zhao, Y.; Li, Y. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv. Mater. 2019, e1904156.
[133]
Kubackova, J.; Zbytovska, J.; Holas, O. Nanomaterials for direct and indirect immunomodulation: A review of applications. Eur. J. Pharm. Sci. 2019, 105139.
[134]
Wang, C.; Fan, W.; Zhang, Z.; Wen, Y.; Xiong, L.; Chen, X. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv. Mater. 2019, e1904329.
[135]
Min, Y.; Roche, K. C.; Tian, S.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S.; Herring, L. E.; Zhang, L.; Zhang, T. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 877-882.
[136]
Appelbe, O. K.; Moynihan, K. D.; Flor, A.; Rymut, N.; Irvine, D. J.; Kron, S. J. Radiation-enhanced delivery of systemically administered amphiphilic-CPG oligodeoxynucleotide. J. Control. Release 2017, 266, 248-255.
[137]
Au, K. M.; Balhorn, R.; Balhorn, M. C.; Park, S. I.; Wang, A. Z. High-performance concurrent chemo-immuno-radiotherapy for the treatment of hematologic cancer through selective high-affinity ligand antibody mimic-functionalized doxorubicin-encapsulated nanoparticles. ACS Cent. Sci. 2019, 5, 122-144.
[138]
Meng, L.; Cheng, Y.; Tong, X.; Gan, S.; Ding, Y.; Zhang, Y.; Wang, C.; Xu, L.; Zhu, Y.; Wu, J. et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 2018, 12, 8308-8322.
[139]
Chen, Q.; Chen, J.; Yang, Z.; Xu, J.; Xu, L.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, e1802228.
[140]
Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X.; Du, J.; Xie, J.; Wang, Q.; Gu, Z.; Zhao, Y. Synthesis of bsa-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater. 2017, 29, 1704136.
[141]
Huang, P.; Zhang, Y.; Wang, W.; Zhou, J.; Sun, Y.; Liu, J.; Kong, D.; Liu, J.; Dong, A. Co-delivery of doxorubicin and 131I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J. Control. Release 2015, 220, 456-464.
[142]
Shih, Y.-H.; Peng, C.-L.; Chiang, P.-F.; Lin, W.-J.; Luo, T.-Y.; Shieh, M.-J. Therapeutic and scintigraphic applications of polymeric micelles: Combination of chemotherapy and radiotherapy in hepatocellular carcinoma. Int. J. Nanomed. 2015, 10, 7443-7454.
[143]
Werner, M. E.; Karve, S.; Sukumar, R.; Cummings, N. D.; Copp, J. A.; Chen, R. C.; Zhang, T.; Wang, A. Z. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 2011, 32, 8548-8554.
[144]
Zhou, M.; Chen, Y.; Adachi, M.; Wen, X.; Erwin, B.; Mawlawi, O.; Lai, S. Y.; Li, C. Single agent nanoparticle for radiotherapy and radio- photothermal therapy in anaplastic thyroid cancer. Biomaterials 2015, 57, 41-49.
[145]
Chen, L.; Zhong, X.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C.; Chai, Z.; Liu, Z.; Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21-28.
[146]
Meng, Z.; Chao, Y.; Zhou, X.; Liang, C.; Liu, J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M. et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS nano 2018, 12, 9412-9422.
[147]
Tian, L.; Chen, Q.; Yi, X.; Chen, J.; Liang, C.; Chao, Y.; Yang, K.; Liu, Z. Albumin-templated manganese dioxide nanoparticles for enhanced radioisotope therapy. Small 2017, 13, 1700640.
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2019
Revised: 16 February 2020
Accepted: 17 February 2020
Published: 31 March 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research was supported by the Post-Doctor Research Project, West China Hospital, Sichuan University (no. 2018HXBH032) and Sichuan Science and Technology Program (No. 2019YFS0109), 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (No. ZYJC18035), China Postdoctoral Science Foundation (No. 2019M663505), and Postdoctoral Interdisciplinary Innovation Foundation, Sichuan University (No. 0040204153243).

Return